Энергия солнца как альтернативный источник энергии
Перейти к содержимому

Энергия солнца как альтернативный источник энергии

  • автор:

Солнечная энергетика: надежда человечества?

Любят на Хабре солнечную энергетику: вот Гугл строит солнечные электростанции (1 2 3 4 5 6), вот Германия однажды генерировала треть текущего энергопотребления на солнечных электростанциях…

Комментарии делятся на 2 категории: «Вот молодцы, а мы только нефть жгем» и «EROEI! Производство солнечных батарей требует больше энергии чем они производят!».

Въедливый читатель наверняка подумает: Как это производит меньше, чем требуется на производство? Их же поставил — они работают, каши не просят, 10 лет, 50лет, 100лет — значит суммарная произведенная энергия равна бесконечности, и они должны быть выгодны при любой стоимости постройки…

Как обстоит все на самом деле, какие есть подходы к солнечной генерации, что ограничивает КПД солнечных элементов, какие гениальные идеи уже были реализованы и почему солнечная энергетика как-то не активно захватывает мир — под катом.

Сколько энергии мы получаем от солнца?

На каждый квадратный метр от солнца приходит 1367 Ватт энергии (солнечная постоянная). До земли через атмосферу — доходит порядка 1020 Ватт (на экваторе). Если у нас КПД солнечного элемента 16% — то с квадратного метра мы можем получать в лучшем случае 163,2 Ватта электричества. Но ведь у нас есть погода, солнце не в зените, иногда бывает ночь (разной длительности) — как это все посчитать?

Годовая инсоляция все это учитывает, включая и тип установки солнечной батареи (параллельно земле, под оптимальным углом, со слежением за солнцем) и дает нам понять, сколько электричества можно будет выработать за год в среднем ( в кВт*ч/м 2 , без учета КПД солнечной батареи):

Город / Тип установки Горизонтально Под оптимальным углом Слежение за солнцем
Астрахань 1371 1593 2200
Владивосток 1289 1681 2146
Москва 1020 1173 1514
Сочи 1365 1571 2129

Т.е. мы видим, что если мы возьмем 1 км 2 солнечных батарей, установим под оптимальным углом в Москве ( 40.0°), то за год сможем выработать 1173*0.16 = 187.6 ГВт*ч. При цене 3 рубля за кВт/ч _условная_ стоимость сгенерированной энергии будет — 561 млн рублей. Почему условная — выясним ниже.

Основные подходы к получению энергии от солнца

Солнечные тепло-электространции
Огромное поле поворачиваемых зеркал отражает солнце на солнечный коллектор, где тепло превращается в электроэнергию двигателем Стирлинга, или нагревом воды и далее — обычные паровые турбины как на ТЭЦ. КПД — 20-30%.

Также существует вариант с линейным параболическим зеркалом (поворачивать нужно только вокруг одной оси):

Какова цена вопроса? Если посмотреть на электростанцию Ivanpah (392 МВт) в которую опосредованно вложился Google — стоимость её строительства составила 2.2 млрд $, или 5612$ на кВт установленной мощности. В Википедии даже радостно написано, что это хоть и дороже угольных электростанций, но якобы дешевле атомных.

Однако тут есть пара нюансов — 1кВт установленной мощности на АЭС стоит на самом деле 2000-4000$ (в зависимости от того кто строит), т.е. Ivanpah на самом деле уже получается дороже АЭС. Затем, если посмотреть на годовую оценку выработки электроэнергии — 1079 ГВт*ч, и разделить на количество часов в году, то среднегодовая мощность получается 123.1МВт (ведь станция у нас генерирует только днем).

Это доводит «усредненную» стоимость строительства до 17871 $/кВт, что не просто дорого, а фантастически дорого. Дороже наверное только в космосе электричество вырабатывать. Обычные электростанции на газе обходятся в 500-1000$/кВт, т.е. в 18-36 раз дешевле, и работают всегда, а не как повезет.

И последнее — в стоимость строительства не включены аккумуляторы, вообще. Если сюда добавить аккумуляторы (о них ниже) или строительство гидроаккумулирующей электростанции — стоимость вылезет через крышу.

У солнечных теплоэлектростанций есть возможность генерировать электричество круглосуточно, используя большой объем нагретого за день теплоносителя. Такие станции тоже есть, но стоимость их стараются не писать, видимо чтобы никого не пугать.

Полупроводниковые фотоэлементы (фотовольтаика, PV) — идея очень простая, берем полупроводниковый диод большой площади. Когда квант света влетает в pn-переход — генерируются пара электрон-дырка, которые создают перепад напряжения на выводах этого диода (около 0.5В для кремниевого фотоэлемента).

КПД у кремниевых солнечных батарей — около 16%. Почему так мало?

На формирование электронно-дырочной пары требуется определенная энергия, не больше и не меньше. Если квант света прилетает с энергией меньшей, чем нужно — то он не может вызвать генерацию пары, и проходит через кремний как через стекло (потому кремний прозрачен для инфракрасного света дальше 1.2мкм). Если квант света прилетает с энергией большей чем нужно (зеленый свет и короче) — пара генерируется, но лишняя энергия теряется. Если энергия еще выше (синий и ультрафиолетовый свет) — квант может просто не успеть долететь до глубины залегания p-n перехода.

Помимо этого, свет может отразиться от поверхности — чтобы избежать этого на поверхность наносят анти-отражающее покрытие (как на линзах в фотообъективах), и могут поверхность сделать в виде гребенки (тогда после первого отражения у света будет еще один шанс).

Увеличить КПД выше 16% у фотоэлементов можно комбинируя несколько разных фотоэлементов (на основе других полупроводников, и соответственно с другой энергией требуемой для генерации пары электрон-дырка) — сначала ставим тот, что эффективно поглощает синий свет, а зеленый, красный и ИК — пропускает, затем зеленый, и на конец красный и ИК. Именно на таких 3-х ступенчатых элементах и достигаются рекордные показатели эффективности в 44% и выше.

К сожалению, 3-х ступенчатые фотоэлементы оказываются очень дорогими, и сейчас балом правят обычные дешевые одноступенчатые кремниевые фотоэлементы — именно за счет очень низкой цены они вырываются вперед по показателю Ватт/$, Стоимость одного ватта для кремниевых фотоэлементов с вводом гигантских производств в Китае опустилась до

0.5$/Ватт (т.е. за 500$ можно купить солнечных элементов на 1000 Ватт).

Основные типы кремниевых элементов — монокристаллические (более дорогие, чуть выше КПД) и поликристаллические (дешевле в производстве, буквально на 1% меньше КПД). Именно поликристаллические солнечные батареи сейчас дают самую низкую стоимость 1 Ватта генерируемой мощности.

Из проблем — солнечные батареи не вечные. Даже если не брать в расчет пыль и грязь (надеемся на дождь и ветер), за счет фотодеградации за 20 лет эксплуатации лучшие кремниевые элементы теряют

15% мощности. Возможно дальше деградация замедляется, но это все равно нужно учитывать.

Пройдемся теперь по основным попыткам увеличить экономическую эффективность:

А давайте возьмем маленький высокоэффективный фотоэлемент и параболическое зеркало
Это называется concentrated photovoltaics. Идея в принципе неплоха — зеркало дешевле, чем солнечная батарея, да и КПД можно иметь 40% а не 16… Проблема только с тем, что теперь нужна (ненадежная) механика для слежения за солнцем, и наша огромная поворотная тарелка должна быть достаточно прочной, чтобы противостоять порывам ветра. Другая проблема — когда солнце заходит за не слишком плотные тучи — выработка энергии падает до нуля, т.к. параболическое зеркало не может рассеянный свет фокусировать (у обычных солнечных батарей выработка конечно падает, но не до 0).

С падением цен на кремниевые солнечные батареи этот подход оказался слишком дорогим (как по установочной стоимости, так и обслуживанию)

А давайте сделаем солнечные элементы круглыми, разместим на крыше, а крышу покрасим в белый цвет
Этим занималась печально известная нынче компания Solyndra, с подачи Барака Обамы получившая гос.гарантию по кредиту в 535 миллионов долларов от американского министерства энергетики… и внезапно объявившая банкротство. Круглые солнечные батареи делали, напыляя слой полупроводника (в их случае Copper indium gallium (di)selenide) на стеклянные трубы. Эффективность солнечных батарей получалась 8.5% (да, получилось хуже простых и дешевых кремниевых).

Яркий пример того, как американский капитализм при должном лоббировании способен по инерции вкачать огромные ресурсы в принципиально не эффективные технологии. По результатам работы никого не посадили.

Дорога ложка к обеду

Теперь после этого буйства непрерывного усовершенствования технологий открываем грустную страницу истории. Солнечные электростанции генерируют электричество днем, а оно больше всего нужно вечером:

Это значит, что если аккумуляторов у нас нет, электростанции на вечерний пик потребления все равно строить придется, а днем — часть должны быть выключены, а часть — находиться в горячем резерве, чтобы если тучки соберутся над солнечной электростанцией — мгновенно заместить выпавшую солнечную генерацию.

Получается, если мы обязываем покупать электричество у солнечных электростанций по обычной цене тогда, когда оно у них генерируется — мы фактически перераспределяем прибыль от существующих классических генерирующих мощностей, которые вынуждены днем простаивать в резерве в пользу солнечных.

Есть и такой интересный вариант — если где-то вечерний пик потребления — где-то на земле разгар дня. Может строить солнечную электростанцию именно там, а электричество передавать по ЛЭП? Это возможно, но требует передачи энергии на расстояния порядка 5-8 тыс км, что также требует огромных капитальных затрат (по крайней мере пока мы не перешли на сверхпроводники) и согласований с кучей стран. Примерно в этом направлении развивался проект Desertec — генерация в Африке, передача в Европу.

Аккумуляторы

Итак, 1Вт солнечная батарея стоит 0.5$. За день она сгенерирует допустим 8Вт*ч электричества (за 8 солнечных часов). Как нам эту энергию сохранить до вечера, когда она будет больше всего нужна?

Китайские литиевые аккумуляторы стоят примерно 0.4$ за Вт*ч, соответственно, на 1Вт солнечной батареи (ценой в 0.5$) нам понадобится аккумуляторов на 3.2$, т.е. аккумулятор получается в 6 раз дороже солнечной батареи! Помимо этого нужно учитывать, что через 1000-2000 циклов заряд-разряд аккумулятор придется заменить, а это всего 3-6 лет службы. Может есть аккумуляторы дешевле?

Самые дешевые — свинцово-кислотные (которые естественно далеко не «зеленые»), их оптовая цена — 0.08$ за Вт*ч, соответственно, на сохранение дневной выработки нам нужно аккумуляторов на 0.64$, что снова больше стоимости самих солнечных батарей. Свинцовые аккумуляторы также быстро умирают, 3-6 лет службы в таком режиме. Ну и на десерт — КПД свинцовых аккумуляторов — 75% (т.е. четверть энергии теряется в цикле заряд-разряд).

Существует также вариант с гидроаккумулирующими электростанциями (днем — закачиваем воду «вверх» насосом, ночью — работаем как обычная гидроэлектростанция) — но их строительство также обходится дорого, и не везде возможно (КПД — до 90%).

Из-за того, что аккумуляторы получаются дороже самой солнечной электростанции, в крупных электростанциях их и не предусматривают, продавая электричество в распределительную сеть сразу по мере генерации, рассчитывая ночью и вечером на обычные электростанции.

Какова же справедливая цена нерегулируемой солнечной генерации?

Возьмем например Германию, как лидера по развитию солнечной энергетики. Каждый кВт сгенерированный солнечными электростанциями там выкупают по 12.08-17.45 евроцентов за кВт*ч, не взирая на то, что генерируют они в дневной минимум потребления. Все чего они добиваются этим — экономия Российского газа, т.к. газовые электростанции все равно должны быть построены и быть в горячем резерве (и все их остальные расходы остаются неизменными — зарплаты, кредиты, обслуживание).

С экономической точки зрения, было бы справедливо, если бы солнечные электростанции получали ровно столько, сколько они позволяют сэкономить на топливе газовым электростанциям.

Допустим стоимость российского газа — 450 $ за 1 тыс. м 3 . Из этого объема можно выработать 39000 ГДж ≈10.8*0,4 GWh ≈ 4.32 GWh электричества (при КПД генерации 40%), соответственно, на 1 кВт*ч солнечного электричества мы экономим российского газа на 0.104$ = 7.87 евроцента. Именно такая должна быть справедливая стоимость нерегулируемой солнечной генерации, и похоже Германия постепенно идет к этой цифре, но на данный момент солнечная энергетика в Германии получается на 50% дотируемой.

Резюме

Поликристаллические солнечные батареи дают самое дешевое солнечное электричество, порядка 0.5$/Ватт, остальные способы намного дороже.

Проблема солнечной энергетики не в КПД солнечных элементов, не в EROEI (он действительно в теории бесконечен), и не в их цене — а в том, что сгенерированную энергию очень дорого хранить до вечера. Т.е. основная проблема — аккумуляторы, которые сейчас уже дороже, чем солнечные батареи и при этом имеют короткий срок службы (3-6 лет).

На данный момент крупномасштабную солнечную генерацию без аккумуляторов можно рассматривать только как способ сэкономить днем небольшую часть ископаемого топлива, она принципиально не может уменьшить количество необходимых классических электростанций (газовых, угольных, АЭС, гидро) — они все равно должны стоять в резерве днем, и полностью брать на себя нагрузку в вечерний пик потребления.

Если в будущем с помощью (жестоких) тарифов удасться сместить пик потребления на день — строительство солнечных электростанций обретет бОльший смысл (например, если тарифы будут такие, что будет выгодно включать электролизное производство алюминия и водорода только днем).

Стоимость «нерегулируемой» солнечной генерации нельзя сопоставлять со стоимостью генерации на классических электростанциях — т.к. они генерируют когда получится, а не когда нужно. Справедливая стоимость нерегулируемой солнечной электроэнергии должна быть равна стоимости сэкономленного ископаемого топлива, и не более — для газа по 450$ справедливая цена солнечной генерации не выше 0.1$ за 1кВт*ч (соответственно, в Германии солнечная генерация дотируется на

«Честная» солнечная энергетика (с аккумуляторами) сегодня может быть экономически оправданна лишь в удаленных районах, где нет возможности подключиться к сети (как например в случае отдаленной, одиноко стоящей базовой станции сотовой связи).

Самая большая проблема солнечной энергетики — ископаемое топливо пока слишком дешевое, чтобы солнечная генерация была экономически оправданной.

Update: Для дальнейшего изучения можно рекомендовать статью о проблемах энергетики Германии в связи с солнечной и ветрогенерацией. Там есть красивые графики выработки, и в целом другие статьи Already_Yet рекомендую почитать.

Урок истории: развитие солнечной энергетики

Solar DAO Russia

Возобновляемая энергетика — это перспективные технологии, ставшие известными как альтернативный источник энергии совсем недавно. На данный момент солнечная энергетика выделяется среди других ВИЭ своей эффективностью и невероятным темпом развития. История солнечных изобретений также удивительна и интересна.

Solar DAO — это токенизированный фонд, созданный для участия в строительстве солнечных электростанций по всему миру. Токены SDAO доступны на бирже YoBit.

Первый прототип.

В 1767 году швейцарским ученым Горацием де Соссюр был изобретен первый солнечный коллектор. Изобретение представляло собой установку для преобразования прямого солнечного света в тепловую энергию.

Чуть менее века спустя, во Франции была изобретена первая установка, преобразующая солнечный свет в электроэнергию.

Первый же успешный опыт по использованию солнечных панелей произошел и вовсе еще через 100 лет: в 1958 году, на втором успешно запущенном спутнике NASA.

Общество за развитие солнечной индустрии

В 20 веке многие страны стали активно выступать за поддержку технологий солнечной энергетики. В 1978 году в Британии была создана первая организация под названием Solar Trade Association (STA). Главная цель — популяризировать солнечную энергетику и сделать ее внедрение легким и эффективным для бытовых и коммерческих пользователей.

1992 год. В Рио-де-Жанейро на «Саммите Земли» была принята конвенция ООН об изменении климата, к которой присоединились 180 стран мира — Framework Convention on Climate Change. Конвенция содержала в себе общие принципы действия стран для решения вопросов изменения климата и внедрения возобновляемой энергетики.

В Апреле 2000 года был основан Европейский совет по возобновляемым источникам энергии (European Renewable Energy Council — EREC). Через 8 лет был проведен первый Международный саммит по вопросам энергетики будущего — «World Future Energy Summit». Год спустя начало работу всем известное ныне Международное агентство по возобновляемым источникам энергии (IRENA).

Звали его Альберт Эйнштейн

Вопреки распространенному мнению о том, что Нобелевскую Премию Альберт Эйнштейн получил за свою теорию относительности, в действительности же его современники по-настоящему оценили вклад физика в развитие фотоэнергетики. В 1921 году Альберт Эйнштейн был удостоен премии Нобеля за объяснение законов внешнего фотоэффекта.И за другие работы в области теоретической физики” 🙂

История солнечной энергетики в лицах

  • 1839. Александр Беккерель впервые открыл явление фотоэффекта в электролите.
  • 1883. Американский изобретатель Чарльз Фриттс создал первую рабочую фотогальваническую ячейку на основе селена. Это был первый функционирующий солнечный элемент. Производительность этого элемента, конечно же, была мала — 1%. Представьте, какими темпами развиваются технологии, если на данный момент КПД солнечных элементов превосходит 40%.
  • 1954. Рождение фотоэлектрической солнечной энергетики. ученые из Bell Labs создали кремниевую фотовольтаическую ячейку.
  • 1963. Компания Sharp запустила массовое производство солнечных модулей, что стало началом широкого и повсеместного использования модулей во всем мире.
  • 1980. Компания ARCO Solar (SolarWorld) производит 1 мегаватт солнечных панелей в год.
  • 1998. Изобретение гибкого тонкопленочного фотоэлектрического модуля ученым Субенду Гуха.
  • 2008. Компания Enphase выпускает первый коммерческий солнечный сетевой микроинвертер.
  • 2010. Лидерами по производству солнечных модулей становятся компании Suntech, First Solar, Sharp.

Олег Солодуха — один из первых разработчиков солнечных элементов на кремнии для наземного применения. Изобретателю принадлежат 12 патентов в области солнечной энергетики, среди которых — технологии двухсторонних солнечных элементом.

Компания Solar Wind, основанная Маратом Заксом и Олегом Солодухой была единственным производителем двухсторонних солнечных панелей вплоть до 2013 года.

В настоящее время Олег Солодуха является соучредителем и техническим директором проекта Солар ДАО.

Solar DAO — это токенизированный фонд, созданный для участия в строительстве солнечных электростанций по всему миру. Токены SDAO доступны на бирже YoBit.

Миллиарды на солнце: как чистую энергию применяют в промышленности

Фото: Freepik

Об авторе: Игорь Шахрай, генеральный директор «Юнигрин Энерджи».

Технологии десятилетиями помогали человеку менять мир, давали толчок к развитию бизнеса и экономики, создавали целые индустрии. Одной из таких индустрий стала возобновляемая энергетика — сегодня это не просто альтернатива нефти и газу, но и ключевой элемент в борьбе с изменением климата и ростом цен на электроэнергию.

Мировой тренд

Возобновляемая энергетика в целом и солнечная энергетика в частности — одна из немногих отраслей, на темпах развития которой не сказались ни пандемия, ни экономическая турбулентность, ни разрывы цепочек поставок. В прошлом году был побит очередной рекорд по вводу солнечной генерации в мире — установлено еще 240 ГВт солнечных электростанций, а их суммарная установленная мощность превысила 1 ТВт.

В 2021 году доля возобновляемой энергетики составляла 10%, но уже превышала долю атомной, а в 2022 году доля ветровой и солнечной энергетики достигла рекордных 12% мирового производства электроэнергии.

Согласно отчету Международного энергетического агентства, с марта 2020 года 67 стран выделили на возобновляемую энергию до $1,215 трлн. 45% из этих средств выделили США, а 37% потратили страны ЕС. При этом к 2030 году глобальные инвестиции в чистую энергию вырастут еще на 50% — до более чем $2 трлн.

В чем причина такого бурного роста? В рекордной «скорости обучения технологий». ВИЭ отличаются от ископаемого топлива тем, что их себестоимость следует экспоненциальной «кривой обучения». У «зеленых» станций практически нет расходов на эксплуатацию, они не подвержены топливной инфляции, то есть их цена зависит исключительно от стоимости технологий. По мере развития и масштабирования производств оборудования сначала был достигнут так называемый сетевой паритет, а уже к 2017 году инвестиционный банк Lazard назвал ветровую и солнечную энергетику самыми дешевыми технологиями генерации электроэнергии. Речь шла о стоимости строительства новой электростанции, но уже в докладе 2023 года стоимость кВт⋅ч некоторых проектов ветровой и солнечной энергетики стала сопоставима с предельными издержками даже «традиционных» электростанций.

Модель космической солнечной станции

Страны-лидеры

Сегодня 60+ стран производят более 10% своей электроэнергии на ветровых и солнечных электростанциях. Среди стран — лидеров по доле ВИЭ в энергобалансе с большим отрывом идет Китай, установивший более половины всего мирового объема возобновляемой энергии, затем страны ЕС, США и Япония. Тем не менее производство более 80% всего оборудования для экологически чистых энергетических технологий сконцентрировано в Китае. При этом другие крупнейшие страны — Россия, США и Индия — развивают собственные технологии и масштабируют свои производства.

Постепенно этот тренд переходит с государственного на корпоративный уровень: сегодня основными драйверами роста доли возобновляемой генерации становятся не правительства стран, чьи мотивы могут различаться, а бизнес, который понимает, что эпоха дешевого ископаемого топлива закончилась.

Так, в прошлом году портфель зеленой энергии Amazon превысил 20 ГВт, что в пять раз больше всей установленной мощности солнечных и ветроэлектростанций на территории России и сопоставимо с портфелями крупнейших мировых энергокомпаний.

Суммарный объем потребления 403 крупнейших мировых компаний, которые планируют полностью перейти на чистую энергию, исчисляется сотнями ТВт⋅ч и сопоставим с энергопотреблением, например, Бразилии.

Помимо строительства крупных солнечных парков, растет популярность интегрированных энергоэффективных решений, например солнечных фасадов, когда сама площадь здания генерирует электроэнергию. Для таких станций, так же как и для крышных, не нужна дополнительная территория. Например, самым большим офисным зданием, работающим на солнечной энергии, стал сервисный центр городского развития Парка инноваций и предпринимательства Шаньдун в Китае.

Использование складских, офисных и производственных помещений для генерации электроэнергии стало нормой для компаний во всем мире, как энергосберегающие лампочки. Кстати, самая большая крышная солнечная электростанция мощностью 18 МВт и площадью 110 тыс. м² расположена не в самых солнечных Нидерландах — на складе производителя одежды PVH Europe в Венло.

Фото:Pexels

Солнечные технологии и российский бизнес

В России с 2014 года построено около 2 ГВт солнечных электростанций, созданы и масштабируются производства солнечных элементов и другого оборудования.

Однако интерес со стороны бизнеса к этой сфере активизировался не так давно, когда в большинстве регионов себестоимость выработки солнечных кВт⋅ч стала сопоставима или даже ниже стоимости электроэнергии из сети.

Вторым ключевым фактором стала климатическая повестка, влияние которой, особенно на крупных экспортеров, ежегодно усиливается. При этом нормативные требования азиатских стран в части экологизации цепочки поставок уже стали строже европейских.

Каждый МВт⋅ч зеленой электроэнергии снижает выбросы углекислого газа на 350 кг, поэтому крупный бизнес, который обязан указывать углеродный след продукции, переходит на использование возобновляемой электроэнергии. Это можно сделать двумя способами: заключив договор поставки электроэнергии с солнечной или ветроэлектростанцией или построив собственную чистую электростанцию (например, для электроснабжения месторождений и удаленных объектов, как это сделали компании «Полиметалл», «Газпром нефть»). Собственные солнечные электростанции, обеспечивающие энергоснабжение офисов и производственных активов, уже есть у ЛУКОЙЛа и «Сибура».

Факторами, формирующими спрос на зеленые технологии, стали FMCG (товары повседневного спроса) и строительный бизнес, отслеживающий запросы со стороны потребителей их товаров и услуг. Это продуктовые и строительные гипермаркеты, банки, производители товаров повседневного спроса. Последние два года этот тренд усиливается среди крупных застройщиков — в «Юнигрин Энерджи» разработали и сертифицировали российские энергогенерирующие фасады, которые позволяют снижать энергопотребление и, следовательно, расходы на эксплуатацию коммерческой и жилой недвижимости. Первое в России здание с использованием фасадных систем появилось в Калининграде. В рамках программы капитального ремонта в дом на улице Маршала Баграмяна были интегрированы солнечные вентилируемые фасады.

Внедрять энергоэффективные решения в новом строительстве начали в прошлом году: в Уфе строят многоквартирный дом с энергогенерирующим фасадом — ЖК «Умный дом «Гелиос». Дом будет облицован фотоэлектрическими модулями, которые позволят уменьшить энергопотребление дома более чем на 150 МВт⋅ч в год и экономить около ₽400 тыс. ежегодно. Аналогичные проекты реализует «Кортрос» в ЖК Headliner в Москве и в ЖК «Олимпика» в Екатеринбурге.

Еще один сегмент, обеспечивающий рост спроса на зеленые технологии в России, — это малый и средний бизнес. Как правило, солнечные электростанции средней мощности монтируют на крышах помещений, снижая общее потребление электроэнергии из сети. Причем такие решения появляются не только в южных регионах — солнечные электростанции есть в Ижевске на крыше производства кофе или Рязанской области на крыше одного из зданий на территории аэродрома. Дело в том, что цена сетевого электричества для компаний с небольшими объемами потребления в разных регионах России колеблется от ₽7 до ₽11 за кВт⋅ч. То есть не так важно, сколько солнца светит, чем то, сколько приходится платить за электричество из сети.

Как еще использовать солнце

Любые технологии, в которых для выработки электричества используется энергия солнца, универсальны, бесшумны и безопасны для человека и окружающей среды в течение всего периода эксплуатации. Солнечный элемент на 90% состоит из кремния, второго по распространенности элемента на Земле, не содержит тяжелых металлов или вредных для окружающей среды примесей и легко перерабатывается.

Именно возможность размещения солнечных панелей непосредственно рядом с местом проживания определило их активное внедрение в городскую инфраструктуру: освещение, дорожную разметку (световая индикация на асфальте), транспорт (солнечное электропитание).

В России уже более двух лет разрешено продавать излишки электроэнергии, выработанной на собственной крыше, обнуляя или снижая платежи за электроэнергию из сети. Но объемы потребления и тарифы на электроэнергию у населения ниже, чем у промышленности, поэтому частные электростанции в России окупаются в два раза дольше.

Использовать солнечную энергию можно и более локально — например, для зарядки телефона или ноутбука: такие устройства можно купить на любом маркетплейсе и больше не думать о том, где и как зарядить телефон.

Преимущества и недостатки солнечной энергии

Какие преимущества может принести использование солнечной энергии в доме или для бизнеса? Связано это с какими рисками? Рассмотрим, какие преимущества и недостатки стоят по отрасли солнечной энергетики.

Окупится энергия от солнца?

Использование энергии солнечного излучения из года в год набирает популярность. Это касается не только крупных компаний, но и владельцев домов. Все чаще как частные электростанции используются и фотоэлектрические фермы. Выбор солнечных панелей на рынке также кажется привлекательным из-за того, что, по сравнению со стоимостью электроэнергии, цены на них снижаются, а эффективность увеличивается. Если сравнить современный комплект солнечных панелей на 3 кВт и комплект десятилетней давности — это небо и земля.

Солнечные коллекторы обеспечивают возобновляемым источником энергии, который остается практически неисчерпаемым. Солнечное излучение может обеспечить электричеством и теплом, поступающих в дома, квартиры или предприятия.

Важным параметром фотоэлектрических элементов является инсоляция, то есть ежегодное количество солнечного света. Чтобы солнечные батареи выполняли свою функцию, им нужны солнечные лучи.

Еще один важный параметр — теоретический потенциал, говорит о возможности использования солнечной энергии в энергетических целях. В расчете реальных возможностей ее потребления на коммунальные цели учитывается также географическое расположение, эффективность технологических данных или возможность хранения энергии в коллекторах.

Солнечная энергия — преимущества и недостатки

Как и большинство новых технологий, альтернативные источники энергии также имеют своих сторонников и противников. Какие преимущества и недостатки можно отметить в использовании возобновляемых источников солнечной энергии?

Преимущества использования солнечной энергии

Экологически чистая солнечная энергия, как и большинство других возобновляемых источников, называется «зеленой». Это означает, что она приветливая к природе, не влияет отрицательно на окружающую среду. Фотогальваника — это отсутствие отходов, экономия ископаемого топлива и отсутствие выбросов вредных веществ в атмосферу.

Это практически бесконечное возобновляемый источник.

Это обеспечивает независимость от роста текущих цен на рынке и коммерческих поставщиков, однако сокращение расходов на электроэнергию требует разовых инвестиций. Хотя фотоэлектрическая установка и стоимость ее монтажа не дешевое удовольствие, однако с годами цена снижается, а стоимость электроэнергии на рынке растет. Избыточная энергия может накапливаться и продаваться сторонним поставщикам. Солнечную энергию можно использовать локально, потому что она есть везде. Главное, чтобы светило солнце.

Низкие эксплуатационные расходы — солнечные установки не ломаются, а гарантии на них дают на десятки лет. По инвестициям в будущее, то выбирая фотоэлектрические элементы для дома или компании, вы сможете адаптировать установку с действующими стандартами и нормами. Они будут усиливаться на протяжении многих лет, стремясь создать все больше и больше энергоэффективных зданий.

Безопасная подача электроэнергии в часы пик — поскольку энергия, вырабатываемая солнечными батареями, используется исключительно вами, на вас не влияют сбои или задержки в поддерж. Например, в часы пик, когда может произойти перегрузка.

Недостатки использования солнечной энергии

  • Энергия зависит от погодных условий — чем меньше солнца, тем меньше эффективность. На то, сколько энергии может быть получено от солнца, влияет также суточная и сезонная цикличность.
  • Загрязнение окружающей среды — хотя солнечная энергия полностью экологическая и возобновляемая, сам процесс формирования панелей оставляет желать лучшего. Противники использования обращают внимание на то, что для изготовления панелей используются токсичные химические элементы (кристаллический кремний, арсенид галлия, сульфид кадмия). Их производство в определенной степени загрязняет окружающую среду.
  • Высокая стоимость установки. Покупка и установка фотоэлектрической установки — это инвестиции. Расходы на панели могут напугать инвесторов
  • Проблемы с хранением большего количества электроэнергии — иногда не удается в полной мере использовать избыточный ток от панелей. Возможными решениями является хранение в батареях. Однако это связано с покупкой и хранением дополнительного оборудования.

Особенности использования солнечной энергии

Солнечная энергия имеет свои преимущества и недостатки, однако первых, безусловно, больше. Установка коллекторов — это инвестиции, которые окупаются годами не только в портфеле, но и в окружающей среде. Возобновляемые источники энергии заботятся о хорошем состоянии природы и здоровья, что делает вас независимыми от роста цен на электроэнергию. Стоит иметь их в вашем доме или бизнесе? Кажется, что ответ может быть только одним.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *