Какую температуру выдерживает кладка на цементном растворе
Перейти к содержимому

Какую температуру выдерживает кладка на цементном растворе

  • автор:

Что добавить в раствор при минусовой температуре. Условия зимней кладки

Что добавить в раствор при минусовой температуре. Условия зимней кладки

Первое условие при возведении стен в холодный период — перед укладкой кирпич или блок обязательно должны быть очищены от снега, льда или инея. Второе важное правило — цемент и готовую смесь нужно хранить в утепленных емкостях. Причем отогревать слегка схватившийся раствор нельзя. Поэтому очень важно обеспечить высокую скорость кладки и быстрое уплотнение нижележащих рядов верхними. А в перерывах желательно укрывать готовую часть стены фанерой, рубероидом или пленкой. Или же тщательно очищать поверхность от снега и инея при возобновлении работ.

Раствор при отрицательных температурах готовят в отапливаемых помещениях, причем используют цемент марки М50 и более. В песке не допускается наличие крупных комков (более 1 см) и кусочков льда.

Кладку при помощи зимних растворов необходимо вести с тонкими швами порядка 1-3 мм (то есть такими же, как и в летнее время). Это требование связано с тем, что большие швы увеличивают теплопотери конструкции и могут привести к значительной осадке весной. Также во время работы следует с особой тщательностью проверять вертикальность стен: любые отклонения тоже чреваты проблемами во время оттепели. Кладку ведут равномерно, по всему периметру здания или длине стены так, чтобы не было больших перепадов по высоте. Столбы и простенки между оконными проемами армируют при помощи стальных сеток.

Наконец, весной, в период оттаивания, необходимо контролировать прочность и устойчивость стены, выполненной зимой. Ведь при повышении температуры кладка также оттаивает, могут возникнуть небольшие осадочные явления и микротрещины. Поэтому, как и во время кладки, следует каждые 2-3 дня проверять сохранение вертикальности конструкций, а при обнаружении минимального отклонения нужно сразу же установить подкосы и опоры из деревянных бревен или металлических труб, которые предотвратят дальнейшее смещение. Обычно это требуется для стен, расположенных с южной стороны. Их на время оттепели можно завесить (например пергамином). После того как в течение 7-10 дней будет поддерживаться круглосуточно положительная температура, опорные элементы убирают.

Еще один способ борьбы с неравномерной осадкой — предварительная монтаж опорных элементов и принудительное оттаивание стены во время ранней весны при помощи калориферов, электрообогревателей или тепловых пушек, располагаемых внутри здания. Для этого необходимо поднять температуру в помещении до 30°С и поддерживать ее в течение нескольких дней. Однако этот способ более трудоемкий, требует немалых энергозатрат, наличия надежного подключения к электросети рядом с домом или использования автономных генераторов.

Как получить раствор нужной концентрации. Разбавление

Разбавле́ние — уменьшение концентрации химического вещества в растворе добавлением растворителя или смешиванием с менее концентрированным раствором. При разбавлении сохраняется количество растворенного вещества.

Для приготовления растворов определенной концентрации следует тщательно рассчитывать массы и объемы смешиваемых растворов, исходя из сохранения количества растворенного вещества при разбавлении:

Друг над другом пишутся процентные концентрации (массовые или объемные) соответственно разбавляемого раствора и разбавителя (для чистого растворителя пишется 0 %). Справа посередине пишется желаемая концентрация (её значение должно быть между концентрациями разбавляемого раствора и разбавителя). Далее производится вычитание по диагоналям от большего значения меньшего и полученные разности записываются напротив исходных растворов. Полученные цифры являются массами (если были взяты массовые проценты) или объемами (если были взяты объемные проценты) соответствующих растворов, которые необходимо взять для приготовления раствора, с концентрацией записанной в середине. Затем полученные значения приводят к необходимым массам или объемам по условиям задания (для перевода массовых единиц в объемы может понадобится знать плотность растворов).

Действительно, чтобы из 50%-го раствора (по массовой концентрации) и воды (0 %) получить 18%-й раствор, следует взять ( 18 − 0 ) = 18 <\displaystyle (18-0)=18>массовых частей раствора и ( 50 − 18 ) = 32 <\displaystyle (50-18)=32>массовых частей воды.

При приготовлении растворов кислот требуется соблюдать правила техники безопасности : использовать очки, перчатки и фартуки. Во избежание резкой экзотермической реакции следует постепенно добавлять кислоту в воду.

Что добавить в раствор при минусовой температуре для кладки в домашних условиях. Добавки в раствор для кирпичной кладки —, какие лучше

Кладку стен из кирпича ведут не только при плюсовой температуре, возведение зданий продолжают и в морозную погоду. Ранее такой процесс считался невозможным, но в результате современных разработок получены добавки в зимнюю кладочную смесь для кирпича. Модификаторы решают проблему строительства в холодное время года без потери качества раствора.

Необходимость применения зимнего раствора

В смесь для кладки входит вода, которая необходима для гидратации цемента . В результате формируется структура раствора, позволяющая набирать прочность. Гидратация эффективно происходит при плюсовых температурных показателях, а кристаллизация воды при морозе замедляет этот процесс .

Применение добавок в зимний раствор для кладки кирпича объясняется причинами :

  • необходимость строительства в мороз;
  • снижение температуры кристаллизации жидкости;
  • активизация твердения цемента;
  • повышение пластичности для облегчения укладки;
  • увеличения эксплуатационного времени.

Методы создания тепляков, подогрева смеси работают только на объектах небольшой величины, а при массовом строительстве используют противоморозные и другие добавки.

Выбор добавок и правила применения

Что добавить в раствор при минусовой температуре для кладки в домашних условиях. Добавки в раствор для кирпичной кладки —, какие лучше

При выборе добавок нужно учитывать температуру воздуха на объекте

Марку модификатора определяют по ее свойствам и действию на раствор. С помощью добавок можно регулировать время работ, увеличить водонепроницаемость, морозостойкость, снизить степень усадки при схватывании.

При введении присадок соблюдают технологию и правила применения :

  • Не нарушают количественную рецептуру завода-производителя , которая приводится в инструкции или на упаковке, чтобы не снизить прочность зимнего кладочного раствора для кирпича.
  • Принимают во внимание температуру воздуха и возможные ее изменения, чтобы правильно регулировать концентрацию модификаторов.
  • Используют защитную спецодежду при работе с химикатами.

Выдерживают рекомендованную температуру растворной массы, обеспечивают равномерное перемешивание. Модифицируют раствор непосредственно перед началом работы, не допускают простаивания подготовленной смеси.

Виды добавок, классификация по действию

Добавки выпускают в виде порошков, жидкостей, готовых к применению. Есть растворы-концентраты, которые разводят перед введением. Виды добавок по действию определены в нормативах ГОСТа 24.640 – 1991 .

  • пластифицирующие вещества;
  • ускорители схватывания смеси;
  • вовлекатели воздуха;
  • замедлители твердения;
  • ингибиторы коррозионных процессов;
  • уплотнители;
  • противоморозные присадки;
  • декоративные красители.

Есть разные виды кладки, для каждой из них нужен состав с определенными качествами. Исходя из этого выбирают требующиеся модификаторы.

Пластификаторы

Что добавить в раствор при минусовой температуре для кладки в домашних условиях. Добавки в раствор для кирпичной кладки —, какие лучшеИспользуют для получения зимнего кладочного раствора для кирпича, который имеет увеличенную подвижность . Помимо этого, повышается плотность, стойкость к замораживанию, водопоглощению.

  • Уменьшают расход цементного вяжущего на 10 – 15%
  • Снижают концентрацию воды на 5 – 15%
  • Снижают степень усадки после схватывания
  • Повышают стойкость к температурным перепадам
  • Увеличивают сцепляемость раствора со стержнями арматуры
  • Уменьшают риск появления коррозии на штамповочной сетке в кладке, металлических закладных деталях.

В пластифицированной смеси появляется меньше воздушных полостей, влияющих на прочность. Материал не расслаивается, увеличивается время хранения смеси до начала укладки в кирпичную стену.

Ускорители

Что добавить в раствор при минусовой температуре для кладки в домашних условиях. Добавки в раствор для кирпичной кладки —, какие лучшеЦель применения обозначена в наименовании добавки — вещества способствуют быстрому затвердеванию растворной смеси . Добавка является актуальной, т. к. при понижении температуры воздуха процесс замедляется, а в мороз останавливается. Оттаивание не схватившейся смеси чревато ухудшением качества, появлением трещин.

Попутное действие ускорителей :

  • увеличивают подвижность, прочность;
  • на 20 – 25% повышают стойкость к впитыванию влаги.

Товар продают в форме жидкости или сухого порошка, который разводят водой перед введением в смесь. Дозировку пишут на этикетке, но обычно применяют в концентрации 0,2 – 5,0% от общей массы . Ускорители используют не только в мороз, но и при необходимости быстро возвести кирпичную кладку большого объема.

Добавка ускоряет набор прочности смеси, поэтому не нужно ждать положенные для этого 28 суток.

Ускоряющие модификаторы имеют в составе агрессивные вещества, поэтому их не применяют в армированной кладке, не комбинируют с другими добавками.

Противоморозные

Что добавить в раствор при минусовой температуре для кладки в домашних условиях. Добавки в раствор для кирпичной кладки —, какие лучшеДействие направлено на ускорение гидратации цемента при минусовой температуре . Химические вещества позволяют раствору сразу набрать 30% прочности, максимально вовлекая воду в этот процесс. Дальше смесь замерзает, не набирая 100% прочности, но этого количества хватает, чтобы при размораживании не начался процесс расслаивания.

Кладку на растворе с такими добавками нельзя сразу нагружать , чтобы смесь могла постепенно дозревать без появления внутреннего напряжения. Противоморозные присадки повышают адгезию массы с металлическими закладками и арматурой, т. к. при отрицательной температуре раствор не обволакивает стержни, и сцепление не происходит.

Что добавить в раствор при минусовой температуре в бетон. Принцип действия и виды морозостойких составов

Что добавить в раствор при минусовой температуре в бетон. Принцип действия и виды морозостойких составов

Что добавлять в бетон при минусовой температуре, вопрос далеко не праздный. Полностью, на 100% универсального состава не существует.

Выбор зависит от многих факторов, прежде всего от самой температуры.

  • Также большое влияние оказывает размер монолита. Плюс следует учесть предназначение изделия, дело в том, что разные добавки могут менять некоторые физические качества бетона и то, что подойдет для ленточного фундамента в частном доме, может не подойти для возведения моста или крупного наливного цоколя.

Что добавить в раствор при минусовой температуре в бетон. Принцип действия и виды морозостойких составов

Прогрев методом «Термос».

Как это работает

Как известно основной задачей воды в растворе является создание условий для кристаллизации составляющих раствора, силикатов, алюминатов и так далее. На языке профессионалов это называется гидратацией цемента.

Наиболее комфортно, без добавок, раствор застывает при температуре 15 — 20 ºС, все что выше и особенно ниже, нуждается в создании специальных условий.

  • Главной задачей подобного рода присадок является снижение периода схватывания раствора и уменьшение времени созревания бетона при низких температурах. То есть снизить уровень замерзания воды и при этом не навредить остальным процессам, происходящим в растворе.

Что добавить в раствор при минусовой температуре в бетон. Принцип действия и виды морозостойких составов

Зависимость набора прочности от температуры.

Распространенные составы и способы работы

  • Наиболее распространенными материалами для изготовления морозоустойчивых присадок смело можно считать соли монокарбоновых кислот, среди профессионалов этот состав известен как «Поташ». Цена на данные составы на отечественном рынке вполне приемлемая.
  • Когда выполняется заливка бетона при минусовой температуре добавки монокарбоновых кислот, должны строго дозироваться. Для каждой температуры количество присадок разное, Такими добавками можно подготовить раствор к температуре до минус 30ºС. Чем ниже температура, тем больше состава потребуется.

Что добавить в раствор при минусовой температуре в бетон. Принцип действия и виды морозостойких составов

Соль монокарбоновой кислоты.

Важно: как говорилось ранее, присадка при неграмотном использовании может понизить другие характеристики раствора.
Поэтому принцип, чем больше, тем лучше здесь может навредить.

  • Следующим лидером нашего рынка является нитрит натрия. Цена на него также не сильно высока, но это вещество обладает сильным, едким, неприятным запахом. Кроме того данный состав легко может воспламениться. При контакте с некоторыми видами современных пластификаторов могут выделяться ядовитые, токсичные газы.

Что добавить в раствор при минусовой температуре в бетон. Принцип действия и виды морозостойких составов

  • Максимальная температура, которую может держать нитрат натрия, составляет не ниже -15ºС. Специалисты рекомендуют его использование при приготовлении растворов на портландцементе или на шлакопортландцементе. Добавлять эту присадку в глиноземистые цементы строго запрещено.
  • Широкий спектр использования имеет формиат натрия и нитрат кальция. Кроме производства ЖБИ, эти присадки могут применяться в штукатурных растворах и растворах предназначенных для кладки кирпича. Но данные составы используются только в комплексе с пластификатором, так как из-за скопления солей, в монолите могут образовываться пустоты и высолы.

Что добавить в раствор при минусовой температуре в бетон. Принцип действия и виды морозостойких составов

Важно: растворы с добавлением присадок должны готовиться своими руками при температуре не ниже 5 — 10 ºС.
Кроме того, они не могут долго храниться, раствор нужно использовать в течение часа после замешивания.

Что добавить в раствор при минусовой температуре в бетон. Принцип действия и виды морозостойких составов

  • Не стоит забывать об отечественных производителях, добавки из линейки морозо-пласт, морозо-стирол и т.д. Являются составами комплексного действия, после заливки благодаря процессам, происходящим внутри монолита, температура поддерживается естественным образом и при небольших морозах, вам достаточно просто хорошо укрыть бетон.

Зависимость от марки бетона

Что добавить в раствор при минусовой температуре в бетон. Принцип действия и виды морозостойких составов

Конструкции для электроподогрева монолита.

  • По нормам СНиП 111-1-76, мороз опасен для бетона только на стадии набора прочности. Поддерживать определенную температуру в монолите нужно до определенного % крепости. Для каждой марки бетона этот процент индивидуален.
  • После того, как монолит схватился, замораживание ему уже не настолько страшно, но и эксплуатировать ЖБИ еще не рекомендуется. Дело в том, что после оттаивания, изделие естественным путем будет дозревать. Активная фаза застывания монолита идет в течение 27 суток. После этого укрепление будет продолжаться еще несколько лет, но гораздо медленнее.
  • Если в состав не вводились морозоустойчивые присадки, то для растворов с маркой М150 достаточно 50% прочности. Марки М200 – М300, могут замораживаться при 40% прочности. Для М400 и более, достаточно 30%. Но при использовании присадки, допустимая прочность перед замораживанием падает в среднем на 10%.

Совет: время вымешивания состава в зимних условиях должно быть увеличено минимум в 2 раза.

Как развести жидкое стекло с водой пропорции. Подготовка силикатного раствора – инструменты и расходные материалы

Как развести жидкое стекло с водой пропорции. Подготовка силикатного раствора – инструменты и расходные материалы

При работе с жидким стеклом лучше всего использовать готовые смеси, предназначенные для выполнения конкретной задачи.

Недостатком таких смесей является высокая стоимость и необходимость полного расходования всей купленной ёмкости. Последнее связано с повышенной скоростью затвердевания смеси после попадания в неё воздуха.

Использовать отдельные компоненты гораздо дешевле, поэтому ручное приготовление растворов распространено чаще, тем более что есть большое количество способов его применения.

При небольшом фронте работ в домашнем строительстве понадобится набор инструментов и материалов:

  • Ведро, используемое только для строительных работ. Токсичность силикатов невысока, однако хранить совместно с ними пищевые продукты не будет лучшим решением.
  • Дрель со шнековой насадкой, предназначенной для перемешивания густых растворов.
  • Кисть или пульверизатор (при необходимости).
  • Цемент (достаточно обычного портландцемента).
  • Мелкий (просеянный) песок.
  • Проточная вода или колодец.
  • Шпатель.
  • Спецодежда.

Смешивать жидкое стекло с водой и другими компонентами необходимо в пропорциях, рекомендованных для конкретного вида работ. Если особенности поверхности приводят к пониженному сцеплению раствора, можно уменьшить содержание воды или увеличить содержание цемента.

При разбавлении жидкого стекла используется холодная вода. Чтобы контролировать её количество и не добавить случайно больше, чем требуется, следует запастись мерными емкостями достаточного объёма.

Что добавить в бетон для цвета в домашних условиях. Железоокисные пигменты для бетона

Изготовителями пигментов рекомендуется не превышать дозировку в размере более 5%. Большее количество вводимого пигмента приведет к значительному ухудшению характеристик бетона, он становится менее прочным.

Чтобы тротуарная плитка дольше служила, в раствор вводят 2-3% пигмента от веса цемента. При этом трудно получить яркий цвет изделия и обычно плитка, бордюрный камень, брусчатка имеют бледный цветовой оттенок.

Что добавить в бетон для цвета в домашних условиях. Железоокисные пигменты для бетона

Перед введением пигмента в бетонный раствор специалисты по изготовлению тротуарных плиток рекомендуют развести в соотношении 1:1 и оставить на 2 часа пигмент в грунтовке глубокого проникновения (типа Церезит). Грунтовок сейчас очень большое количество, выбор за мастером.

По их мнению это позволяет получить более равномерный цвет изделия.

В некоторых случаях, например, при использовании в качестве пигмента черной сажи, ее разводить в грунтовке необходимо, так как иначе из-за своего малого веса сажа всплывает в бетонном растворе. Если ее добавлять, не разводя в сухую смесь, как делают многие с железоокисными пигментами, то при размешивании сажа сильно пылит и летает по воздуху.

Но перед мастером может стоять и другая задача – неравномерная окраска бетона. Она необходима при изготовлении искусственного камня, похожего, к примеру, на мрамор.

Для этого подготавливаются два или более разноцветных бетонных раствора, как это делалось при изготовлении малой вазы для фонтана.

Затем растворы смешиваются и выполняется несколько оборотов лопаткой. Используя различную концентрацию пигмента и раствора, можно получить разнообразные рисунки и разводы.

Если раствор готовится не для лепки, а для заливки в формы, можно нанести красители в смеси с цементом (сухие или жидкие) на лицевую поверхность формы перед ее заполнением подготовленным бетонным раствором. Комбинируя эти методы, получают очень интересные цветовые эффекты.

Какую температуру выдерживает цемент

Одним из важнейших показателей жаростойкости цементов является отношение цементного камня к воздействию повышенных температур. Процесс нагревания цементного камня сопровождается фазовыми превращениями, испарением воды, выделяющейся из кристаллогидратов, изменением пористости и, как следствие, снижением прочности. По степени снижения прочности, как правило, судят о жаростойкости цемента. В зависимости от температурных условий службы бетона используют различные цементы: портландцемент, глиноземистые цементы различного состава, жидкое стекло и т. д. Высокоглиноземистые цементы, обеспечивающие высокую огнеупорность бетона, являются наиболее перспективными.

Для организации производства высокоглиноземистого цемента на ОАО «Подольск-Цемент» была создана промышленная установка, состоящая из электродуговой печи — плазменного реактора и вспомогательного оборудования: сырьевых бункеров для различных видов специальных клинкеров, смесителя-утилизатора тепла, полых анода и катода, охладителя расплава для различных режимов охлаждения специальных клинкеров.

Плазменный реактор представляет собой металлический цилиндр, футерованный изнутри двумя слоями огнеупора (ШЦУи ВГЦ бетоном) и охлаждаемый снаружи циркуляционной водой. Днище и крышка плазменного реактора футерованы ВГЦ бетоном и охлаждаются через водяные кессоны циркуляционной водой. Средняя толщина футеровки подобрана экспериментально и составляет 250 мм.

Корпус плазменного реактора имеет ряд технологических отверстий для обеспечения загрузки шихты, слива расплава, отбора газов, розжига реактора, внутреннего осмотра реактора во время работы.

На созданной установке предприятие постоянно производит высокоглиноземистый цемент требуемого состава. Возможности установки велики — она способна выпускать любые высокоглиноземистые цементы от мономинерального до полиминерального состава с добавками различных веществ, повышающих огнеупорность цемента.

Для исследования был взят высокоглиноземистый цемент, характеризующийся следующим содержанием (мас. %): моноалюминаткальция СА — 32, диалюминат кальция СA2 — 60, другие примесные соединения — 8. В качестве добавки использовали микрокремнезем и органическую кислоту.

Известно, что при гидратации высокоглиноземистого цемента образуются метастабильные гидроалюминаты кальция САН10, С2АН8, перекристаллизовывающиеся затем в кубическую форму С3АН6. Для определения степени их влияния на изменение структуры и прочности цементного камня при его нагревании до высоких температур на первом этапе были приготовлены различные гидроалюминаты по методике, опубликованной в литературе.

При нагревании САН10 в пределах 100 °С потеря кристаллизационной воды составляет 3 мол., при 150–170 °С удаляется 1,5 молекулы Н20, при 260–280 °С — 5 мол. Н20, и оставшиеся 0,5 молекулы удаляется при 800–900 °С. Фазовый анализ, по данным РФА, соответственно представлен в начале аморфной массой, а затем СА и Аl203.

Таблица №1: Результаты испытаний исследуемого цемента.

Результаты испытаний исследуемого цемента.

При нагревании С2АН8 теряет воду: при 100 °С — 1 %, при 170 °С — 1,5 % и при 300–320 °С — 5,5 %. При этом происходит постепенное изменение фазы от С2АН7 до С2АН4, полностью разлагающихся и превращающихся в аморфную массу. При 600 °С обнаруживается появление минерала С12А7 (d = 0,480, 0,263 нм).

При нагревании С3АН6 основная часть воды (4,5 мол. Н20) удаляется при 310–320 °С. Оставшиеся 1,5 мол. Н20 отщепляются при 500 °С. Нагревание образца до 600 °С сопровождается образованием С12А7 и СаО. Наличие свободной извести в цементном камне нежелательно, поскольку при циклическом нагревании и охлаждении возможно превращение Са(ОН)2 => СаО, что сопровождается деструкцией цементного камня, снижением прочности и даже, в определенных условиях, его разрушением.

Физико-химические исследования процесса гидратации и дегидратации высокоглиноземистого цемента с добавками и без добавок показали, что при 20 °С образуются в основном С2АН8 (бездобавочный ГЦ), перекристаллизовывающийся в С3АН6, в присутствии микрокремнезема — стерлингит С2АSH8, а органическая кислота способствует образованию САН10. При нагревании цементного камня до 200 °С степень гидратации всех цементов повышается за счет ускорения реакций взаимодействия компонентов с физически адсорбированной водой, находящейся в структуре цементного камня. Количество продуктов гидратации увеличивается, они заполняют поры в цементном камне, и прочность его повышается.

При этом состав продуктов гидратации в бездобавочном высокоглиноземистом цементе представлен кубическим гидроалюминатом кальция, в цементе с добавкой микрокремнезема — гидроалюмосиликатом кальция, а в цементе с добавкой органической кислоты — гексагональным гидроалюминатом кальция.

При дальнейшем повышении температуры нагрева происходит отщепление кристаллохимической воды из структуры гидратов, увеличение пористости и снижение прочности цементного камня. Степень снижения прочности зависит от состава цемента. Цементы с добавками показывают меньшую пористость и более высокую прочность по сравнению с бездобавочными.

Отмечено, что в присутствии добавок перекристаллизация первоначально образовавшихся гидро-алюминатов кальция замедляется и превалирует степень гидратации. Образующиеся гидраты заполняют поры и тем самым уменьшают снижение прочности цементного камня.

На основе проведенных исследований был изготовлен бетон с применением высокоглиноземистого цемента без и с добавкой указанных материалов. Как известно, свойства жаростойкого бетона зависят от природы заполнителя, который обеспечивает формирование контактной зоны между цементным тестом и заполнителем. Известны многочисленные исследования контактной зоны между заполнителем и цементным камнем. Согласно большинству из них, разрушение структуры бетона в основном зависит от степени сцепления заполнителя и цементного теста. В исследованиях показано, что главной составляющей контактной зоны является гидроксид кальция, который, главным образом, обусловливает связь «цемент–заполнитель». Эта связь обеспечивается за счет эпитаксиального роста кристаллов гидроксида кальция на поверхности заполнителя. Микроструктура контактной зоны, как правило, характеризуется большой пористостью и наличием крупных кристаллов гидроксида кальция. Однако эти данные характерны для бетонов на основе потландцемента. При гидратации высокоглиноземистого цемента, как показано выше, образуются гидроалюминаты кальция и гидроксид алюминия. Поэтому было целесообразно исследовать, как в этом случае формируется структура контактной зоны.

Для решения этой проблемы были проведены исследования с применением традиционного шамота как в качестве крупного, так и мелкого заполнителя. Для сравнения брали смесь, состоящую из шамота в качестве крупного компонента и микрокремнезем, как мелкий заполнитель. Образцы бетона нагревали при 100–1200 °С и затем исследовали методами РФА, ИКС и оптической микроскопии. Микроскопические исследования показали, что шамотные частицы окружены продуктами гидратации высокоглиноземистого цемента. Толщина контактной зоны составляет 10–15 мкм. Контактная зона образована благодаря эпитаксиальному росту кристаллов гидроалюминатов кальция на поверхности шамотных частиц. Контактная зона между микрокремнеземом и цементным тестом трудно просматривается из-за тонкого переплетения продуктов дегидратации цементных частиц. На поверхности частиц микрокремнезема наблюдается слой взаимных прорастаний продуктов его гидратации и цемента. При повышении температуры до 1200 °С, в результате реакции аморфизированных частиц, образовавшихся из дегидратированных компонентов высокоглиноземистого цемента и микрокремнезема, образуется муллит.

Исследования образцов, содержащих шамот в качестве заполнителя, показали, что микротрещины появляются вдоль зерен заполнителя, т. е. по контактной зоне. В случае образцов с микрокремнеземом формируется очень плотная контактная зона, простирающаяся как вдоль исходных негидратированных частиц, так и гидратированных фаз, что, видимо, является причиной высокой прочности бетона. Соответственно, пористость образцов очень низкая.

Таблица №2: Прочность бетонов при твердении в нормальных условиях и после нагревания.

Прочность бетонов при твердении в нормальных условиях и после нагревания.

Исследование образцов после их нагрева до 1200 °С показали значительно более высокуюостаточную прочность бетона со смесью шамота и микрокремнезема. Образцы имели высокую термостойкость — 30 циклов попеременного высушивания и увлажнения.

Таким образом, применение высокоглиноземистого цемента в сочетании с заполнителем, состоящим из шамота и микрокремнезема, весьма эффективно. Указанные высокоглиноземистый цемент и бетон на его основе рекомендуются для футеровки различных тепловых агрегатов.

При какой температуре можно заливать бетон на улице: минусовой, минимальной, в мороз

Вопрос о том, при какой температуре можно заливать бетон, очень важен, так как от него во многом зависят не только технические и эксплуатационные характеристики застывшего монолита, но и вообще вероятность прохождения процесса застывания. Залитый при неверной температуре или замерзший при твердении бетон может покрываться трещинами, демонстрировать меньшие показатели прочности и стойкости в сравнении с нормативными, становиться причиной деформации или полного разрушения конструкции, здания.

Для набора бетоном проектной прочности и гарантии длительного срока службы очень важно соблюдение температурного режима как в момент заливки, так и на протяжении всего времени твердения (28 суток). Оптимальной считается температура воздуха в районе +20 градусов. Но далеко не всегда на строительной площадке удается соблюсти это условие.

Довольно часто появляется необходимость лить бетон при отрицательной температуре или в процессе выполнения работ неожиданно портится погода. В таких случаях используются разные методы прогрева бетона, в состав смеси вводят противоморозные добавки, утепляют конструкцию непосредственно на площадке и т.д. Прежде, чем использовать любой этот способ прогрева, необходимо тщательно изучить его особенности и условия реализации.

заливка бетона при минусовой температуре

Процесс набора прочности бетонных конструкций

Чтобы определить, до какой температуры можно заливать бетон, необходимо сначала хотя бы поверхностно рассмотреть особенности процесса набора прочности монолитом. Реакция начинает протекать между цементом/водой в момент затворения. В первые часы бетон еще текучий и с ним можно работать, но уже по прошествии нескольких часов он начинает застывать, становиться сначала более густым, а потом и вовсе твердым.

Процесс взаимодействия воды и цемента называется гидратацией. Гидратация проходит в два этапа: сначала смесь схватывается, потом твердеет. В схватывании задействованы алюминаты, появляются иглообразные кристаллы, связанные между собой. Через 6-10 часов эти кристаллы становятся своеобразным каркасом, скелетом. Бетон начинает твердеть.

основные характеристики бетона

Весь процесс схватывания может занимать от 20 минут до 20 часов, что напрямую зависит от температуры окружающего воздуха. Дольше всего процесс проходит в холодное время года – когда на улице около 0, схватываться бетон начинает через 6-10 часов, длится этап 15-20 часов.

В процессе твердения в реакцию с находящейся в растворе водой вступают клинкерные минералы, постепенно формируется силикатная структура. Реакция провоцирует появление мелких кристаллов, они объединяются в уникальную мелкопористую структуру. Это и есть бетон, который на протяжении 28 суток уже набирает марочную прочность и стойкость, не меняя формы и структуры.

температура твердения бетона

Оптимальное значение температуры для стадии твердения также равно +20 градусам, влажность – до 100%.

Отклонения от параметров существенно влияют на прочность: полное созревание монолита длится несколько лет (но набор проектной прочности должен быть завершен через 28 суток после заливки), скорость твердения меняется со временем.

Влияние отрицательной температуры на твердение бетона

Как уже было указано выше, скорость гидратации очень сильно зависит о температуры окружающей среды. Так, при снижении с +20 до +5 градусов твердение проходит медленнее в среднем в 5 раз. Дальше чем ниже температура, тем медленнее проходит реакция. При достижении минусовой температуры гидратация и вовсе прекращается (вода просто замерзает).

В момент замерзания вода имеет свойство расширяться, что становится причиной повышения давления внутри бетонного раствора и разрушения уже сформировавшихся связей кристаллов. Структура бетона разрушается и в дальнейшем восстановиться уже не может. Кроме того, появившийся в смеси лед может обволакивать крупные наполнители, разрушая сцепление с цементом. Все это существенно ухудшает монолитность конструкции и понижает прочность.

Когда вода оттаивает, твердение продолжается, но структура бетона уже деформирована. Могут появляться отслоения, деформации, трещины, наблюдаться отделение крупных наполнителей и арматуры от монолита. Чем на более ранней стадии свежезалитый бетон замерз, тем меньшим будет показатель прочности.

покрытие бетона трещинами из-за мороза

  • Когда температура окружающей среды находится на отметке +5 С и ниже, а никаких мероприятий по прогреву или повышению морозостойкости бетона осуществляться не планируется.
  • В межсезонье – когда температура нестабильна, отмечены сильные скачки как отметок на термометре, так и влажности.
  • Если термометр показывает температуру +25 градусов и выше, а влажность воздуха ниже 50%. В такое время лучше использовать специальные цементы или не проводить работы, так как процесс гидратации будет происходит очень быстро: вода испарится, а бетон не успеет набрать прочность, вследствие чего нередко появляются трещины, деформации, отслоения и т.д.
  • Заливка бетона при минусовой температуре без прогрева в течение минимум 3 дней до отметки в +10-30 градусов.
  • Когда уже приготовлен бетон со специальными присадками, а за окном внезапно наступила оттепель или влажность воздуха стала выше 60%, начался дождь и т.д.
  • В случае неумения определить оптимальный режим прогрева, настроить приборы, контролировать бетон в мороз. Ведь для бетона одинаково страшны как мороз, так и перегрев.

Бетонирование зимой

Использовать бетон в мороз может понадобиться в самых разных случаях – когда невыгодно останавливать строительство на целый сезон, в случае выполнения экстренных работ и т.д. С учетом губительного воздействия минусовой температуры на материал и его технические характеристики, бетон нужно прогревать. В случае, когда температура внутри раствора выше температуры снаружи, могут появляться деформации.

Прогрев бетона осуществляется до момента набора критического показателя прочности. Если таковых данных нет в проектной документации, то значение принимают в 70% от проектной прочности. Когда есть требования со значениями водонепроницаемости/морозостойкости, то критическая прочность составляет 85% от проектной.

Основные методы прогрева бетона для заливки при минусе:

Таким образом, вопроса о том, при какой минимальной температуре можно заливать бетон, нет вообще. Задача заключается в том, чтобы в соответствии с условиями работ оптимально подготовить смесь и объект для сохранения технических свойств материала и основных требований по прочности, надежности, долговечности.

Самый простой и дешевый вариант – прогрев всех компонентов, использующихся для приготовления бетона. Их греют для того, чтобы в момент заливки бетон имел минимум +35-40 градусов.

Греют все материалы, кроме цемента: щебень/песок до +60, воду до +90, цемент просто на время оставляют в теплом помещении (чтобы был комнатной температуры). Потом смешивают все компоненты и выполняют заливку.

Метод термоса

Этот вариант актуален в случае заливки массивных конструкций. Дополнительного прогрева не предусматривается, но укладываемая смесь должна демонстрировать температуру в +10 градусов как минимум (лучше больше). Данный метод заключается в том, чтобы залитая смесь в процессе остывания успела приобрести критическую прочность.

Опалубку надежно защищают теплоизолирующими материалами, устраняя теплопотери бетона, находящегося в процессе затвердевания. Вода не замерзает, бетонный монолит постепенно набирает прочность без разрушения внутренней структуры. Такой вариант используют для заливки фундаментов зимой, он считается наиболее простым и экономичным, так как не требует использования какого-либо оборудования.

обогрев бетона зимой при минусе

Электронагрев бетонной смеси

Задумываясь о том, при каких температурах можно заливать бетон, многие рассматривают в качестве выхода из ситуации электропрогрев. Осуществляться прогрев может с использованием нескольких способов: с применением электродов, метода индукции и с различными электронагревательными устройствами.

  • В свежезалитую смесь вводят электроды.
  • Потом на электроды подают ток.
  • В процессе прохождения тока по электродам они нагреваются, передают тепло бетону.

Ток должен быть переменным, так как постоянный станет причиной прохождения процесса электролиза, который сопровождается выделением газа. Газ экранирует поверхность всех электродов, значительно возрастает сопротивление тока, в результате чего нагрев заметно снижается. В случае, если в бетоне уложена арматура, она может использоваться в качестве электрода.

прогрев бетона проводом

Чтобы данный способ сработал, необходимо сделать так, чтобы бетон прогревался равномерно и максимум до +60 градусов. Расход электроэнергии в таких случаях обычно не превышает 80-100 кВт*ч на кубический метр бетонного раствора.

Индукционный нагрев применяется достаточно редко, так как его реализация предполагает ряд сложностей. Данный тип прогрева бетонной смеси работает на принципе бесконтактного нагрева высокочастотными токами электропроводящих материалов. Так, вокруг стальной арматуры мотают изолированный провод, а через него пропускают ток. Таким образом появляется индукция, арматура нагревается и греет бетон. Расход электроэнергии составляет обычно 120-150 кВт*ч на кубический метр бетона.

Применение электронагревательных приборов предполагает использование самых разных средств для уменьшения негативного воздействия мороза на процесс гидратации смеси. Это могут быть греющие маты, к примеру, которые раскладывают на бетон и затем подключаются к сети. Можно сделать над залитым монолитом что-то типа палатки, установить внутри тепловую пушку и греть.

Тут важно обеспечить удержание влаги в бетоне, чтобы он, в процессе прогрева, не пересох, что также негативно влияет на качество и прочность, как и холод (при замерзании). Расход электроэнергии (при условии, что температура окружающего воздуха составляет около -20 градусов) составляет 100-120 кВт*ч на кубический метр.

прогрев бетона в отрицательные температуры

Паропрогрев бетона в зимнее время

Когда температура окружающей среды на нуле или ниже, есть смысл задуматься о прогреве бетона паром. Данный метод особенно эффективен для тонкостенных конструкций. В опалубке с внутренней стороны делают каналы, через них пускают пар. Иногда делают двойную опалубку, а пар пропускают между двумя стенками. Можно смонтировать трубы внутри бетона, а затем по ним пускать пар.

С использованием данного метода можно прогреть бетон до +50-80 градусов. Столь высокая температура и оптимальная влажность ускоряют в несколько раз процесс твердения. Так, за 2 суток при паропрогреве бетон набирает прочность, аналогичную твердению в течение недели в нормальных условиях.

Единственный недостаток данного метода – существенные затраты времени, финансов и усилий для его реализации.

как заливать зимой бетон

Использование присадок при морозе

Сегодня очень распространено использование противоморозных добавок и особых химических ускорителей твердения бетона. Чаще всего в качестве этих добавок выступают нитрит натрия, хлористые соли, карбонат кальция и другие. Добавки существенно понижают температуру замерзания воды, активизируют гидратацию цемента (таким образом повышается температура застывания бетона).

Благодаря введению в состав смеси добавок можно избежать необходимости прогрева. Некоторые добавки способны повысить стойкость бетона к морозу настолько, что вопрос о том, можно ли заливать бетон при минусе, не стоит вообще: гидратация проходит даже при окружающей температуре -20 градусов.

противоморозные добавки в бетон

Но, несмотря на все преимущества, присадки обладают и некоторыми недостатками.

Время твердения (схватывания, застывания) бетона в зависимости от температуры

Заливка бетона в холодное и жаркое время года требует особых навыков и знаний, т.к. работы с цементной смесью осложняются, а период ее высыхания резко уменьшается или возрастает. Изменение скорости твердения бетона в зависимости от температуры обусловлено замедлением процессов гидратации и удержанием большого количества жидкости в толще материала.

Для ускорения застывания и предупреждения дефектов используются специальные строительные приемы, полимерные и противоморозные добавки.

добавки для бетонного раствора

Стадии набора прочности бетонной конструкцией

Схватывание и твердение растворов на основе цемента обусловлено его химическим взаимодействием с водой. Силикаты, алюминаты и алюмоферриты, которые входят в состав портландцемента, обеспечивают повышение прочности на различных стадиях отверждения.

Скорость химических реакций зависит от наличия катализаторов (специальных добавок) и температуры.

Бетонные конструкции

Стадия схватывания

В состав цементного порошка входит трехкальциевый алюминат (3СаО*Al2O3), трехкальциевый силикат (алит, 3СаО*SiO2), двухкальциевый силикат (белит, 2CaO*SiO2) и алюмоферрит. Алит, который занимает большую часть массы портландцемента, участвует в обеих стадиях отверждения. При затворении водой и в начале стадии схватывания он выделяет тепло, которое увеличивает скорость реакции.

Однако более активным компонентом цемента на этапе схватывания является трехкальциевый алюминат. В течение 24 часов после смешивания он интенсивно реагирует с водой, формируя первичные связи в бетоне. После окончания схватывания алюминат полностью утрачивает влияние на прочность цемента.

марки бетона

Стадия схватывания проходит в первые часы после заливки опалубки. Скорость начала реакции и длительность процесса зависят от состава смеси и температуры воздуха. При нормальных температурах (+18…+22°С) бетон схватывается через 2,5-3 часа. Из них 1,5-2 часа проходит до начала реакции, а 1 час уходит непосредственно на схватывание.

Стадия твердения

Основным реагентом на стадии твердения является алит. Белит обеспечивает постепенное упрочнение материала в процессе эксплуатации: за счет его свойств прочность материала через 2-3 года может составлять до 250% прочности после твердения.

Стандартный срок затвердевания бетона

прочность бетона

Зависимость времени набора прочности от марки бетонной смеси

Повышение прочности бетона на сжатие коррелирует с увеличением вязкости смеси. Это означает, что с увеличением марки материала время схватывания и твердения сокращается.

Продолжительность реакций для бетона разных марок

Марка материала Время схватывания, часов Время твердения, суток
М100 3-3,5 До 30
М200 2-2,5 14-25
М300 1,5-2 7-14
М400 1-2 4-7
М500 <1 2-4

Продолжительность набора прочности зависит от состава смеси, влажности, температуры внешней среды и материала.

Марка и назначение раствора определяют и критическую прочность бетонного камня. Это значение, по достижении которого конструкция продолжит твердеть после замерзания без потери эксплуатационных свойств. Данный показатель зависит от марки следующим образом:

Если в момент замерзания образец имеет соответствующий уровень прочности на сжатие, то температурные перепады незначительно повлияют на его прочность. При замерзании на ранних стадиях твердения без применения противоморозных добавок прочность готовой конструкции падает не менее чем на 50%. Например, для марки М200 критической точкой прочности является 80 кгс/см² или 8 МПа.

Специальные добавки

Существует два типа добавок, регулирующих процесс твердения раствора:

При заливке в условиях низких температур используются противоморозные реагенты. Они понижают температуру замерзания воды, препятствуя ее фазовым переходам при 0…+4°С.

В зависимости от вида и концентрации добавок они позволяют работать с бетонным раствором при температуре до -15…-25°С. К морозоустойчивым реагентам относятся нитрит натрия, нитрат-нитрит кальция, карбамид и др.

Набор прочности бетона в зависимости от температуры

При высоких температурах

Для профилактики неравномерности и быстрого высыхания в бетон добавляются замедляющие добавки, а готовая конструкция смачивается в процессе застывания.

Высокая температура и влажность применяются при производстве стандартных бетонных изделий в автоклавах. Такие условия обеспечивают быстрое схватывание и максимальное твердение конструкций.

В прохладное время

При низких температурах раствор долго схватывается, а затем в течение длительного времени остается хрупким по сравнению с марочной прочностью. Химические реакции происходят до температуры фазовых превращений воды.

При отрицательной температуре

Набор прочности бетона при различных температурах

В таблице рассмотрен набор прочности материала марок М200 и М300.

Снижение вязкости раствора

пластификаторы для бетона

Слишком длительное перемешивание приводит к «перевариванию» бетона и снижению конструктивной прочности готовой конструкции. Чтобы сохранить подвижность раствора и избежать негативных эффектов, в смесь добавляются пластификаторы. Они удлиняют периоды схватывания и застывания.

Снизить вязкость смеси на стадии затвердевания нельзя. Механическое воздействие на застывающий бетонный камень приводит к формированию дефектов и растрескиванию конструкции. До достижения минимально допустимого уровня прочности застывающий бетон следует предохранять от ударов, вибрации и др.

Зависимость уровня набора прочности от показателей температуры материала

Низкая температура ингредиентов отрицательно влияет на эксплуатационные характеристики бетонного камня. Если для смешивания используется холодная вода и наполнитель, то последующий уход за конструкцией не сможет обеспечить марочную прочность.

набор прочности бетона

При температуре менее 10°С рекомендуется подогревать воду, которая применяется для изготовления. Если показатель термометра соответствует -5…0°С или ниже, то необходимо подогревать и мелкий наполнитель (речной песок).

Для сокращения времени схватывания и расходов на подогрев бетона в опалубке компоненты разогреваются до предельно допустимого уровня. Максимальное значение определяется составом и маркой портландцемента. При нагреве выше этой температуры готовая смесь будет реагировать менее интенсивно, что скажется на прочности конструкции.

Предельная температура компонентов бетонного раствора

Вид цемента Максимальная температура воды для затворения, °С Предельная температура наполнителя, °С Максимальная температура бетонного раствора после вымешивания, °С
Глиноземистый 40 20 25
Портландцемент марки М400 и выше

Рекомендации по ускорению процесса

Соблюсти необходимые условия для заливки не всегда возможно: в жаркую и холодную погоду температура отклоняется от оптимальной не менее чем на 15-20°С, а влажность может составлять ниже 60%.

Чтобы избежать пагубного влияния низкой влажности, высоких и низких температур, бетонщики прибегают к специальным методам ухода. К ним относится обработка горячим влажным паром, применение теплых опалубок, закладка электродов и греющих проводов в тело бетонного изделия и др.

При заливке фундамента строители прибегают к мерам защиты бетона на этапе смешивания, но редко дополнительно подогревают готовую конструкцию. Это обусловлено тем, что основа здания должна пройти этапы усадки и стабилизации грунта. В этом случае возникшие дефекты не скажутся на прочности дома, а будут устранены с помощью дополнительного слоя бетона.

Какую температуру выдерживает цемент

Вы используете устаревший браузер. Этот и другие сайты могут отображаться в нём некорректно.
Необходимо обновить браузер или попробовать использовать другой.

Применяется для приклеивания декоративных элементов из керамики, камня или других минеральных материалов к нагревающимся поверхностям. Рекомендована для кладки, облицовки, шпатлевки, затирки и ремонта печей, котлов, каминов и заделки трещин на дымоходах. Мастика устойчива к воздействию воды и температуры до +1300°C. Отличная адгезия, высокая эластичность, удобство применения, низкий расход.

Влияние пониженных и повышенных температур на твердеющий цемент.

Понижение температуры замедляет процесс твердения цемента и, следовательно, снижает его механическую прочность. Схватывание и твердение практически прекращаются при превращении воды в лед. После оттаивания этот процесс возобновляется, но конечная прочность при этом уменьшается. Быстротвердеющие цементы менее чувствительны к понижению температуры, так как характеризуются повышенным тепловыделением и быстрее наращивают прочность.

Прочность бетона к моменту возможного замораживания должна составлять не менее 50-70% от проектной в зависимости от вида конструкции. Для достижения этой прочности в зимних условиях бетон должен выдерживаться по методу термоса, основанному на применении утепленной опалубки и защитного покрытия открытых поверхностей, обеспечивающих замедленное остывание бетона до того момента, когда он приобретет требуемую прочность. Наряду с этим применяют искусственный прогрев бетона электрическим током, паром или теплым воздухом.

При зимних работах используют и так называемые противоморозные добавки, затворяя бетон на растворах солей (смесь CaC l 2 с NaCl, поташ), понижающих температуру замерзания жидкой фазы в твердеющем бетоне и ускоряющих его твердение. Применение противоморозных добавок позволяет не нагревать бетон при твердении. При использовании в качестве противоморозных добавок хлористых солей бетон можно применять только для неармированных конструкций.

Большое значение для целого ряда сооружений имеет морозостойкость уже затвердевшего цементного раствора или бетона, особенно в тех случаях, когда многократное замораживание и оттаивание сопровождаются увлажнением водой. Такое совместное действие воды и мороза наблюдается, в частности, в частях плотин, шлюзов и ряда других гидротехнических сооружений, расположенных в зоне переменного горизонта воды. Вредное действие описанных факторов объясняется тем, что вода, замерзая в порах и случайных трещинах бетона, увеличивается в объеме, что создает давление на стенки пор и вызывает в бетоне внутренние напряжения. Многократное замерзание и оттаивание могут разрушить бетон. Следует отметить, что наиболее морозостойкие бетоны получаются на основе цемента. Большое значение имеет структура бетона, его плотность и степень водонасыщения.

В зависимости от назначения сооружений и климатических условий бетон должен выдерживать от 15 до 150, а иногда и более циклов замораживания с промежуточным оттаиванием.

Воздухововлекающие добавки не только повышают морозостойкость, для чего они главным образом и предназначены, но и водонепроницаемость, улучшают подвижность и уменьшают водопотребность бетонов и растворов. При этом несколько снижается прочность и уменьшается объемный вес. Обычно при смешении цемента (без добавок) с водой и заполнителями в процессе приготовления бетонной смеси в ее состав вовлекается некоторое количество мелких пузырьков воздуха (не более 2%). Введение воздухововлекающих добавок увеличивает содержание воздуха в бетонной смеси на 3-5%, в ней образуется много мельчайших замкнутых воздушных пузырьков, равномерно распределенных по всей массе материала. Эти пузырьки воспринимают возникающее при замерзании бетона давление расширяющейся воды и тем самым ослабляют давление на стенки пор.

Повышение температуры ускоряет процесс твердения цемента и увеличивает его прочность. Необходимым условием при этом является наличие влажной среды. В противном случае повышение температуры может значительно понизить прочность твердеющего цемента.

С учетом этого заводы бетонных изделий пользуются следующими приемами, ускоряющими процесс твердения бетона: пропариванием в пропарочных камерах насыщенным паром нормального давления; запариванием бетонных изделий в автоклавах паром под давлением около 9 атм; электропрогревом твердеющего бетона. Наиболее распространен первый метод, причем обычно через 10-12 ч пропаривания достигается не менее 70% отпускной прочности изделий. Через 28 суток прочность пропаренных изделий все же на 10-20% ниже прочности изделий, твердевших весь этот срок при обычных температурах.

Затвердевшие растворы и бетоны не могут считаться вполне огнестойкими, а тем более огнеупорными, так как продукты, составляющие затвердевший цементный камень, разрушаются при повышенных температурах. Так, например, Са(ОН)2 обезвоживается при 547 0 С, а гидросиликат кальция начинает терять гидратную воду при температуре 180-200 0 С. Тем не менее бетон оказывается достаточно стойким при пожарах, так как в этом случае высокие температуры действуют только на его поверхность, внутри же него температура не доходит до критических пределов.

Сколько сохнет кирпичная кладка на улице и при какой температуре можно класть

Обычно все строительные работы ведутся в теплое время и неспроста. Это связано с особенностями затвердевания раствора, сложностью проводимых работ. Ведь не всем по силам копать для траншеи под фундамент мерзлый грунт, да и вода на морозе замерзает. А этот компонент строительных смесей, в частности, она входит в состав цементного раствора.

Из-за ряда сложностей редко кто решается возводить жилье при минусовой температуре. Но, если строительство объекта неизбежно надо выполнять в зимнее время, то это выполнимо. Надо лишь придерживаться определенных правил и знать нюансы затвердевания раствора при разных температурах.

Выбор времени года

при какой температуре можно класть кирпич

Качественная кирпичная кладка выполняется только при плюсовых температурах и нормальной влажности воздуха. Чем ниже показатель на градуснике, тем хуже твердеет раствор для кирпично кладки, а при минусовых значениях этот процесс приостанавливается.

Как использовать кирпич строительный одинарный полнотелый м 150 можно узнать из данной статьи.

При низких температурах вода, содержащаяся в цементном составе, может замерзнуть и превратиться в лед. Поэтому ни о каком взаимодействии химических компонентов не может быть и речи.

Каков размер одинарного кирпича, указано в данной статье.

Если же реакция успела произойти до заморозков и раствор держит кладку, может оказаться, что он не затвердел, так как ему помешала все та же вода, превратившаяся в лед. Из-за ее формы он потерял свою привычную пластичность, и швы между кирпичами плохо уплотнились. После оттаивания и затвердевания цементного состава прочностные характеристики кирпичной кладки заметно понижаются.

Даже при низких положительных температурах время затвердевания раствора увеличивается в четыре раза, что уж говорить об отрицательных. Он просто схватывается и замерзает. Но с приходом теплого периода начинает размораживаться и терять свои прочностные характеристики. Если температура воздуха поднимается постепенно, то через неделю они у него восстанавливаются полностью. Естественно, их показатели будут ниже кладки, произведенной летом, но смогут оставаться на должном уровне.

На видео рассказывается, при какой температуре можно класть кирпич:

Каков расход цемента на кладку кирпича, можно узнать в данной статье.

Проблемы кладки кирпича в зимнее время:

температура кладки кирпича

  • состояние воды в растворе принимает форму льда, из-за этого он увеличивается в объеме на 10%, а при оттаивании опять уменьшается, вызывая этим усадку всей конструкции;
  • сложности при сохранении прочности кладки;
  • при нестабильной температуре, которая наблюдается в холодные периоды, есть вероятность, что по зданию пойдут трещины из-за создавшихся в растворе пустых пузырьков;
  • кирпич может покрыться инеем, этому способствуют все те же температурные изменения;
  • снижение качества кладки в сравнении с аналогичным показателем в летнее время;
  • потеря части вяжущих свойств из-за льда, образованного в растворе и инея застывшего по всей ширине кирпиче. При плюсовой температуре они начнут таять и сцепление между ними заметно ухудшится.

Эти и другие особенности надо учитывать, при решении выполнять кирпичную кладку зимой.

Проведение работ при минусовых показателях

Как уже стало понятно главные опасения связаны с цементным раствором. Наиболее сильно подвержен температурным изменениям именно его состав. Поэтому сразу нужно оговориться, что для таких целей выбирается раствор, который имеет следующие особенности:

  • в нем должны содержаться противоморозные добавки. Они повышают температуру цементного состава и предупреждают его застывание. С их помощью застывание может происходить и при -50°С;
  • подвижность цементного раствора лежит в пределах 10-13 см по конусу;
  • бетонная смесь должна удобно укладываться и быть пластичной;
  • после укладки надо регулярно проводить проверку застывания раствора. Для этих целей в кладке делаются небольшие углубления, в которые периодически помещается градусник. По его показаниям контролируется температура смеси.

На видео рассказывается, можно ли класть кирпич при минусовой температуре:

Каков расход цемента на 1 куб кирпичной кладки, указано в данной статье.

Технология кирпичной кладки в зимнее время та же самая, что и в летнее. Она заключается в укладке кирпича на постель из цементного раствора, но вот способы ее выполнения совершенно разные. Для успешной кладки в зимнее время существует несколько методов:

  • устройство тепляка;
  • использование противоморозных добавок;
  • электроподогрев;
  • метод термоса;
  • замораживание.

Все эти способы обеспечивают надежную и прочную кладку кирпича. При более детальном их рассмотрении станет понятно, за счет чего это происходит.

О том какой размер у полуторного красного кирпича указывается в данной статье.

Применение тепляка

Это эффективный способ. Но он предусматривает проведение подготовительных работ. Для его выполнения необходимы рейки и обычный рулонный полиэтилен. С помощью реек вокруг начатого строительства возводится каркас, на который крепится выбранный теплоудерживающий материал и создается воздушное пространство.

применение тепляка для кладки кирпича

Оно обогревается переносными печами, электронагревателями и другими обогревательными устройствами. За счет такого приема кирпич и раствор находятся в условиях с приемлемой температурой, хорошо скрепляются между собой и быстрее застывают. Но тепло внутри самодельного каркаса надо поддерживать несколько дней, из-за этого обязательно проводится регулярные проверки состояния обогревателя.

Как правильно использовать кирпич облицовочный полуторный, можно узнать прочитав статью.

Такой способ имеет один заметный нюанс – с помощью него сложно обогреть целый дом. Чаще всего его применяют для возведения только какой-то одной части кладки.

Противоморозные добавки

Их введение в раствор позволяет снизить температурный показатель замерзания воды в нем, поэтому при их применении он способен даже при морозе набрать нужную прочность.

В качестве добавок используются составы из хлористого натрия, калия, нитрата натрия и углекислого калия.

противоморозные добавки для кладки кирпича

Последние два вида допускается использовать без последующего подогрева. На момент их использования температура цементной смеси должна быть не ниже 5°C. Если получилось, что раствор с добавками замерз, а его не успели использовать, то нельзя его разогревать горячей водой, лучше замесить новую порцию. Возведение кладки таким составом осуществляется до момента его схватывания с кирпичом.

Каков состав керамического кирпича, указано здесь.

Способ замораживания

укладка кирпича на подогретый раствор

Широко распространенный метод. Он заключается в укладке кирпича на подогретый раствор. После возведения кирпичной конструкции происходит остывание раствора, и он замерзает. Окончательное затвердевание цементного состава происходит весной при оттаивании. При этом оно сопровождается существенной усадкой построенной кирпичной конструкции и это может привести к разрушению зданий, которые имеют высоту более 15 метров.

Суть процесса заключается в следующем: на подготовленный для кладки участок наносится подогретый до высокой температуры состав. Поддержание его температурного режима осуществляется при помощи механизма подогрева цистерны.

После доводки цементной смеси до нужной температуры ее надо использовать очень быстро буквально в течение получаса. Укладка производится по классической технологии. Примечательно, что такой раствор обеспечит кирпичную конструкцию прочностью еще до его полного замерзания.

Каковы размеры огнеупорного шамотного кирпича, рассказывается в содержании данной статьи.

При этом методе необходимо придерживаться нескольких правил:

  • Температура раствора должна быть одинакова по всему периметру. Если это требование не выполнить, то при оттаивании дом деформируется, а со временем он может вообще обрушиться.
  • Этот метод можно применять при минимально допустимой температуре – 30°C.
  • Замерзший раствор нельзя разбавлять горячей водой. Во время замерзания кладки, выполненной из этого состава, на швах будут образовываться поры, в которых ранее находился лед, а это приводит к потере нужной прочности.

Иногда для надежного исполнения кладки все здание, возведенное методом замораживания, нагрев производится стационарными системами обогрева. Повышение температуры до 30°C приводит к тому, что кладка оттаивает за трое суток, и раствор начинает затвердевать. После этого стены сушат с помощью строительных вентиляторов.

При оттаивании отдельно стоящие конструкции, выполненные подобным образом, могут потерять свою устойчивость, чтобы избежать этого их необходимо зафиксировать временными опорами.

Метод термоса

Простой способ, обеспечивающий затвердевание раствора, при котором создается нужная температура. При нем используется тепло самого кирпича. Чтобы использовать его кирпичи укладываются порциями, и каждая уложенная часть покрывается термоизоляцией. Такой прием не дает кирпичам потерять тепло и продлевает схватывание его с раствором.

Некоторые строители прогревают материал перед укладкой, и тогда тепло, выделяемое таким кирпичом, исключает застывание воды в растворе. Сразу после выполнения работ, возводимые стены утепляют подручными материалами способными сохранять тепло.

Электропрогрев кладки

Способен помочь при возведении части стены, для его проведения требуются определенные знания и опыт работы с электрооборудованием. При кирпичной кладке в раствор горизонтально устанавливаются электроды, питание которых осуществляется от электросети. При нагревании они отдают свое тепло раствору и кирпичам.

электропрогрев кладки

Это приводит к нормальному затвердеванию цементного состава, но при условии, что все вертикальные швы такой кладки хорошо заполнены. Если нет специальных электродов, то применяется проволока. Используют ее в диаметре от 0,3 до 6 мм. Выбор этого параметра зависит от источника тепла и предполагаемой схемы прогрева.

кладка кирпича зимой

Расход электроэнергии на 1 м 3 может доходить до 175 кВт/ч, из них 75% уходит на обогрев кирпича, а это, по сути, пустая трата, ведь следует тщательней прогревать раствор.

Для обогрева такой кладки применяются нефтегазовые калориферы и электрообогреватели. Стержневые электроды должны обеспечивать температуру не ниже +10°С. Их укладывают с шагом в 20 см, к ним подводят напряжение равное 40-60 В. Оно обеспечит нужный обогрев и кристаллизация цементной смеси значительно ускоряется, в среднем на 20%. Это способ широко используется, но потребляет много электроэнергии.

Какой бы способ ни был выбран, главное, сразу подготовить все нужные материалы и оценить предполагаемые затраты. Раствор следует готовить небольшими порциями, так как потом после его затвердевания нельзя будет его развести. С помощью таких методов даже зимой можно обеспечить нормальную кирпичную кладку и построенный таким образом дом будет ничуть не хуже, чем летний вариант.

Какую температуру нагрева выдерживает цемент?

Какую температуру выдерживает цементно песчаный раствор?

Согласно своду правил СП 82-101-98 запрещается проводить штукатурные работы при температуре на улице ниже +5 °С или, когда температура раствора опускается ниже отметки +8 °С. Что касается использования раствора для кладки, её можно проводить только если раствор нагрет до +20 °С в мороз не сильнее -20°С.

Какую температуру выдерживает кирпичная кладка?

Оптимальная температура для работы – до минус 5-7 градусов, при дальнейшем ее понижении следует использовать названные выше методики. Однако вопрос о температуре для кладки перестанет быть острым, когда есть обыкновенная соль. Если использовать ее, то работа продолжается при любой отрицательной температуре.

Какую температуру выдерживает глиняный кирпич?

Стандартный «красный» (глиняный) кирпич характеризуется тем, что не выдерживает высоких температур. При температуре 1200°С он плавится, а когда остывает — крошится. Но в комнатной печи температура не превышает 800°С, и поэтому при её изготовлении вполне можно обойтись и без огнеупорных материалов.28 июл. 2020 г.

Какую температуру держит силикатный кирпич?

Его составляющие начинают плавиться при температуре выше +550 градусов, в то время как керамический кирпич выдерживает нагрев до 1000 градусов. Именно поэтому силикатный кирпич нельзя использовать для сооружения каминов и печей.5 июл. 2018 г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *