Что следует сделать для уменьшения потерь электроэнергии при ее передаче
Перейти к содержимому

Что следует сделать для уменьшения потерь электроэнергии при ее передаче

  • автор:

9. Что следует сделать для уменьшения потерь электроэнергии при ее передаче?

9. Можно уменьшить сопротивление проводов и силу тока в них, что более эффективно.

Решебник по физике за 9 класс А.В.Перышкин, Е.М.Гутник Решебник по физике за 9 класс (А.В.Перышкин, Е.М.Гутник, 2009 год),
задача №9
к главе «Глава III Электромагнитное поле. §51. Получение и передача переменного электрического тока. Трансформатор. Ответы на вопросы».

Справочник электрика

Передача электроэнергии. Путь от электростанции к потребителю. Сокращение потерь при передаче электроэнергии.

Рассмотрим кратко систему электроснабжения, представляющую из себя группу электротехнических устройств для передачи, преобразования, распределения и потребления электрической энергии. Глава расширит кругозор тех, кто хочет научиться грамотно использовать домашнюю электросеть.

Снабжение электроэнергией осуществляется по стандартным схемам. Например, на рис. 1.4 представлена радиальная однолинейная схема электроснабжения для передачи электроэнергии от понижающей подстанции электростанции до потребителя электроэнергии напряжением 380 В.

От электростанции электроэнергия напряжением 110—750 кВ передается по линиям электропередач (ЛЭП) на главные или районные понижающие подстанции, на которых напряжение снижается до 6—35 кВ. От распределительных устройств это напряжение по воздушным или кабельным ЛЭП передается к трансформаторным подстанциям, расположенным в непосредственной близости от потребителей электрической энергии. На подстанции величина напряжения снижается до 380 В, и по воздушным или кабельным линиям электроэнергия поступает непосредственно к потребителю в доме. При этом линии имеют четвертый (нулевой) провод 0, позволяющий получить фазное напряжение 220 В, а также обеспечивать защиту электроустановок.
Такая схема позволяет передать электроэнергию потребителю с наименьшими потерями. Поэтому на пути от электростанции к потребителям электроэнергия трансформируется с одного напряжения на другое. Упрощенный пример трансформации для небольшого участка энергосистемы показан на рис. 1.5. Зачем применяют высокое напряжение? Расчет сложен, но ответ прост. Для снижения потерь на нагрев проводов при передаче на большие расстояния.

Потери зависят от величины проходящего тока и диаметра проводника, а не приложенного напряжения.

Например:
Допустим, что с электростанции в город, находящийся от нее на расстоянии 100 км, нужно передавать по одной линии 30 МВт. Из-за того, что провода линии имеют электрическое сопротивление, ток их нагревает. Эта теплота рассеивается и не может быть использована. Энергия, затрачиваемая на нагревание, представляет собой потери.

Свести потери к нулю невозможно. Но ограничить их необходимо. Поэтому допустимые потери нормируют, т. е. при расчете проводов линии и выборе ее напряжения исходят из того, чтобы потери не превышали, например, 10% полезной мощности, передаваемой по линии. В нашем примере это 0,1-30 МВт = 3 МВт.

Например:
Если не применять трансформацию, т. е. передавать электроэнергию при напряжении 220 В, то для снижения потерь до заданного значения сечение проводов пришлось бы увеличить примерно до 10 м2. Диаметр такого «провода» превышает 3 м, а масса в пролете составляет сотни тонн.
Применяя трансформацию, т. е. повышая напряжение в линии, а затем, снижая его вблизи расположения потребителей, пользуются другим способом снижения потерь: уменьшают ток в линии. Этот способ весьма эффективен, так как потери пропорциональны квадрату силы тока. Действительно, при повышении напряжения вдвое ток снижается вдвое, а потери уменьшаются в 4 раза. Если напряжение повысить в 100 раз, то потери снизятся в 100 во второй степени, т. е. в 10000 раз.

Например:
В качестве иллюстрации эффективности повышения напряжения укажу, что по линии электропередачи трехфазного переменного тока напряжением 500 кВ передают 1000 МВт на 1000 км.

Линии электропередач

Электрические сети предназначены для передачи и распределения электроэнергии. Они состоят из совокупности подстанций и линий различных напряжений. При электростанциях строят повышающие трансформаторные подстанции, и по линиям электропередачи высокого напряжения передают электроэнергию на большие расстояния. В местах потребления сооружают понижающие трансформаторные подстанции.

Основу электрической сети составляют обычно подземные или воздушные линии электропередачи высокого напряжения. Линии, идущие от трансформаторной подстанции до вводно-распределительных устройств и от них до силовых распределительных пунктов и до групповых щитков, называют питающей сетью. Питающую сеть, как правило, составляют подземные кабельные линии низкого напряжения.

По принципу построения сети разделяются на разомкнутые и замкнутые. В разомкнутую сеть входят линии, идущие к электроприемникам или их группам и получающие питание с одной стороны. Разомкнутая сеть обладает некоторыми недостатками, заключающимися в том, что при аварии в любой точке сети питание всех потребителей за аварийным участком прекращается.

Замкнутая сеть может иметь один, два и более источников питания. Несмотря на ряд преимуществ, замкнутые сети пока не получили большого распространения. По месту прокладки сети бывают наружные и внутренние.

Способы выполнения линий электропередач

Каждому напряжению соответствуют определенные способы выполнения электропроводки. Это объясняется тем, что чем напряжение выше, тем труднее изолировать провода. Например, в квартирах, где напряжение 220 В, проводку выполняют проводами в резиновой или в пластмассовой изоляции. Эти провода просты по устройству и дешевы.

Несравненно сложнее устроен подземный кабель, рассчитанный на несколько киловольт и проложенный под землей между трансформаторами. Кроме повышенных требований к изоляции, он еще должен иметь повышенную механическую прочность и стойкость к коррозии.

Для непосредственного электроснабжения потребителей используются:

♦ воздушные или кабельные ЛЭП напряжением 6 (10) кВ для питания подстанций и высоковольтных потребителей;
♦ кабельные ЛЭП напряжением 380/220 В для питания непосредственно низковольтных электроприемников. Для передачи на расстояние напряжения в десятки и сотни киловольт создаются воздушные линии электропередач. Провода высоко поднимаются над землей, в качестве изоляции используется воздух. Расстояния между проводами рассчитываются в зависимости от напряжения, которое планируется передавать. На рис. 1.6 изображены в одном масштабе опоры для воздушных линий электропередач напряжениями 500, 220, 110, 35 и 10 кВ. Заметьте, как увеличиваются размеры и усложняются конструкции с ростом рабочего напряжения!

Например:
Опора линии напряжением 500 кВ имеет высоту семиэтажного дома. Высота подвеса проводов 27 м, расстояние между проводами 10,5 м, длина гирлянды изоляторов более 5 м. Высота опор для переходов через реки достигает 70 м. Рассмотрим варианты выполнения ЛЭП подробнее.

Воздушные ЛЭП
Определение.
Воздушной линией электропередачи называют устройство для передачи или распределения электроэнергии по проводам, находящимся на открытом воздухе и прикрепленным при помощи траверс (кронштейнов), изоляторов и арматуры к опорам или инженерным сооружениям.

В соответствии с «Правилами устройства электроустановок» по напряжению воздушные линии делятся на две группы: напряжением до 1000 В и напряжением свыше 1000 В. Для каждой группы линий установлены технические требования их устройства.

Воздушные ЛЭП 10 (6) кВ находят наиболее широкое применение в сельской местности и в небольших городах. Это объясняется их меньшей стоимостью по сравнению с кабельными линиями, меньшей плотностью застройки и т. д.

Для проводки воздушных линий и сетей используют различные провода и тросы. Основное требование, предъявляемое к материалу проводов воздушных линий электропередачи, — малое электрическое сопротивление. Кроме того, материал, применяемый для изготовления проводов, должен обладать достаточной механической прочностью, быть устойчивым к действию влаги и находящихся в воздухе химических веществ.

В настоящее время чаще всего используют провода из алюминия и стали, что позволяет экономить дефицитные цветные металлы (медь) и снижать стоимость проводов. Медные провода применяют на специальных линиях. Алюминий обладает малой механической прочностью, что приводит к увеличению стрелы провеса и, соответственно, к увеличению высоты опор или уменьшению длины пролета. При передаче небольших мощностей электроэнергии на короткие расстояния применение находят стальные провода.

Для изоляции проводов и крепления их к опорам линий электропередач служат линейные изоляторы, которые наряду с электрической должны также обладать и достаточной механической прочностью. В зависимости от способа крепления на опоре различают изоляторы штыревые (их крепят на крюках или штырях) и подвесные (их собирают в гирлянду и крепят к опоре специальной арматурой).

Штыревые изоляторы применяют на линиях электропередач напряжением до 35 кВ. Маркируют их буквами, обозначающими конструкцию и назначение изолятора, и числами, указывающими рабочее напряжение. На воздушных линиях 400 В используют штыревые изоляторы ТФ, ШС, ШФ. Буквы в условных обозначениях изоляторов обозначают следующее: Т — телеграфный; Ф — фарфоровый; С — стеклянный; ШС — штыревой стеклянный; ШФ — штыревой фарфоровый.

Штыревые изоляторы применяют для подвешивания сравнительно легких проводов, при этом в зависимости от условий трассы используются различные типы крепления проводов. Провод на промежуточных опорах укрепляют обычно на головке штыревых изоляторов, а на угловых и анкерных опорах— на шейке изоляторов. На угловых опорах провод располагают с наружной стороны изолятора по отношению к углу поворота линии.

Подвесные изоляторы применяют на воздушных линиях 35 кВ и выше. Они состоят из фарфоровой или стеклянной тарелки (изолирующая деталь), шапки из ковкого чугуна и стержня. Конструкция гнезда шапки и головки стержня обеспечивает сферическое шарнирное соединение изоляторов при комплектовании гирлянд. Гирлянды собирают и подвешивают к опорам и тем самым обеспечивают необходимую изоляцию проводов. Количество изоляторов в гирлянде зависит от напряжения линии и типа изоляторов.

Материалом для вязки алюминиевого провода к изолятору служит алюминиевая проволока, а для стальных проводов— мягкая стальная. При вязке проводов выполняют обычно одинарное крепление, двойное же крепление применяют в населенной местности и при повышенных нагрузках. Перед вязкой заготовляют проволоку нужной длины (не менее 300 мм).

Головную вязку выполняют двумя вязальными проволоками разной длины. Эти проволоки закрепляют на шейке изолятора, скручивая между собой. Концами более короткой проволоки обвивают провод и плотно притягивают четыре-пять раз вокруг провода. Концы другой проволоки, более длинные, накладывают на головку изолятора накрест через провод четыре-пять раз.

Для выполнения боковой вязки берут одну проволоку, кладут ее на шейку изолятора и оборачивают вокруг шейки и провода так, чтобы один ее конец прошел над проводом и загнулся сверху вниз, а второй — снизу вверх. Оба конца проволоки выводят вперед и снова оборачивают их вокруг шейки изолятора с проводом, поменяв местами относительно провода.

После этого провод плотно притягивают к шейке изолятора и обматывают концы вязальной проволоки вокруг провода с противоположных сторон изолятора шесть-восемь раз. Во избежание повреждения алюминиевых проводов место вязки иногда обматывают алюминиевой лентой. Изгибать провод на изоляторе сильным натяжением вязальной проволоки не разрешается.

Вязку проводов выполняют вручную, используя монтерские пассатижи. Особое внимание обращают при этом на плотность прилегания вязальной проволоки к проводу и на положение концов вязальной проволоки (они не должны торчать). Штыревые изоляторы крепят к опорам на стальных крюках или штырях. Крюки ввертывают непосредственно в деревянные опоры, а штыри устанавливают на металлических, железобетонных или деревянных траверсах. Для крепления изоляторов на крюках и штырях используют переходные полиэтиленовые колпачки. Разогретый колпачок плотно надвигают на штырь до упора, после этого на него навинчивают изолятор.

Провода подвешиваются на железобетонных или деревянных опорах при помощи подвесных или штыревых изоляторов. Для воздушных ЛЭП используются неизолированные провода. Исключением являются вводы в здания — изолированные провода, протягиваемые от опоры ЛЭП к изоляторам, укрепленным на крюках непосредственно на здании.

Внимание!
Наименьшая допустимая высота расположения нижнего крюка на опоре (от уровня земли) составляет: в ЛЭП напряжением до 1000 В для промежуточных опор от 7 м, для переходных опор — 8,5 м; в ЛЭП напряжением более 1000 В высота расположения нижнего крюка для промежуточных опор составляет 8,5 м, для угловых (анкерных) опор — 8,35 м.

Наименьшие допустимые сечения проводов воздушных ЛЭП напряжением более 1000 В, выбираемые по условиям механической прочности с учетом возможной толщины их обледенения, приведены в табл. 1.1.

Минимально допустимые значения проводов возжушныхЛЭП напряжением более 1000 В
Таблица 1.1

На воздушных ЛЭП напряжением до 1000 В устанавливают заземляющие устройства. Расстояние между ними определяется числом грозовых часов в году:

♦ до 40 часов — не более 200 м;
♦ более 40 часов — не более 100 м.

Сопротивление заземляющего устройства должно быть не более 30 Ом.

Допустимые расстояния от нижних проводов воздушных ЛЭП напряжением до 1000 В и до 10 кВ и их опор до объектов представлены в табл. 1.2.

Потери при передаче электроэнергии

При передаче электроэнергии происходят довольно большие потери, которые бьют по карману не только поставщику, но и потребителю. В условиях кризиса это особенно ощутимо. Есть ли решение у этой проблемы? Как устранить ее и возможно ли это сделать?

Электрическая сеть состоит минимум из 3-х ключевых компонентов:

  • Генератор;
  • Потребитель;
  • Сеть проводов или линия электропередачи.

Это идеальная схема, но на самом деле она состоит их многотысячных проводов длиной в несколько километров, оборудования и многочисленных подстанций. Все они связывают участников сети между собой. При этом на каждом звене происходят потери электроэнергии. Потребитель в результате получает электроэнергию не в отпущенном количестве, а в фактически переданном. Чтобы эти потери не достигали больших значений, поставщики ищут постоянно решения, используют разные способы и методы. Но для их подбора необходимо определить причину потери электроэнергии.

Условно делят их на:

  • Производственные;
  • Технологические;
  • Коммерческие.

Потери при передаче электроэнергии

Разберемся подробнее с каждым из них.

Коммерческие потери происходят по следующим причинам:

  • Погрешности расчетов и показаний;
  • Незаконное использование электроэнергии;
  • Неправильно подобранные тарифы.

Уменьшить нецелевые затраты позволяют специальные расчеты, определение категории потери. Например, технологические — это задача потребителя электроэнергии. Сократить потери возможно корректировкой тарифов или модернизацией оборудования.

Коммерческие потери влияют на прибыль поставщика, поэтому ведется особый контроль за незаконными подключениями, работают контролирующие отделы, внедряются системы сбора данных в автоматическом режиме.

Технологические потери возникают при передаче электроэнергии ЛЭП.

Причины возникновения электропотерь:

  • Постоянные расходы. К ним можно отнести работу оборудования вхолостую.
  • Высокие токи нагрузочные.
  • Климатические особенности. Это затраты на устранение льда и других последствий погоды.

Производственные потери — расходы для питания оборудования. Замеряют его специальными приборами.

Как уменьшить потери электропередачи?

Есть 2 варианта: уменьшить сопротивление проводов или силу тока в линии электропередач. Для первого варианта используют провода из меди, алюминия, увеличивают их поперечное сечение. При этом важно, чтобы провода были небольшого веса и рекомендуется применение перфорированных кабельных лотков. Также для уменьшения потерь используют шинопровод. Его применение позволяет сэкономить немалую сумму.

Причины возникновения электропотерь

С целью уменьшения силы тока в линии электропередач используется трансформатор или станция.

Снизить затраты также можно следующими эффективными методами:

  • Оптимизация схемы и работы электросети;
  • Модернизация оборудования.;
  • Уменьшение суммарной мощности;
  • Оптимизация нагрузки трансформаторов.

Подбор метода осуществляется специалистами индивидуально для каждого конкретного случая.

Заключение

Снижение потерь электроэнергии при передаче – комплексная работа. Безусловно, процесс этот очень непростой и часто финансово затратный, но, если добиться желаемого результата, все старания быстро окупятся. Главное — делать правильно, грамотно, учесть все детали и особенности. В этом вопросе должны быть заинтересованы 2 стороны, так, как только при таком подходе можно сократить потери и при этом существенно снизить затраты. Избежать потерь — нельзя, но минимизировать — можно. Для этого стоит использовать современное оборудование, инновационный подход и опыт ведущих специалистов.

1. Мероприятия по снижению потерь мощности и электроэнергии.

Повышение экономичности электроснабжения сельского хо­зяйства — большая комплексная задача. С ней тесно связаны задачи улучшения качества электроэнергии и надежности электроснабжения. В результате проведения ранее рассмотренных мероприятий в большинстве случаев одновременно растет экономичность электроснабжения. Весьма важны мероприятия по снижению потерь электроэнергии и ее рациональному использованию.

Все электроустановки, составляющие систему электроснабже­ния, в том числе электрические линии и трансформаторы, характеризуются активными сопротивлениями. Поэтому при передаче, распределении и преобразовании электрической энергии происходят ее потери.

Подавляющая часть потерь энергии в сельских сетях приходится на электрические линии и трансформаторы, и обычно в практических расчетах учитывают потери только в этих элементах сетей. Потери энергии в проводах, кабелях и обмотках трансформаторов пропорциональны квадрату протекающего по ним тока нагрузки, и поэтому их называют нагрузочными потерями. Ток нагрузки, как правило, изменяется во времени, и нагрузочные потери часто называют переменными.

По мере роста нагрузок и присоединения к электрической сети новых потребителей в ней возрастают потери электрической энергии. На предприятиях электрических сетей систематически рассчитывают потери мощности и энергии, и на основе этих расчетов в необходимых случаях проводят мероприятия по снижению потерь.

Различают организационные мероприятия по снижению потерь, совершенствованию систем учета электроэнергии, а также технические.

К основным организационным мероприятиям относят:

— выбор оптимальных мест размыкания воздушных линий (ВЛ) напряжением 10. 35 кВ с двухсторонним питанием;

— поддержание оптимальных уровней напряжения на шинах 10 кВ районных трансформаторных подстанций (РТП) 1 !0. 35/10 кВина шинах 0,38 кВ трансформаторных подстанций или пунктов (ТП) 10/0,4 кВ;

— отключение одного из трансформаторов в режимах малых нагрузок на двухтрансформаторных подстанциях, а также трансформаторов на подстанциях с сезонной нагрузкой;

— выравнивание нагрузок фаз в сетях напряжением 0,38 кВ;

— сокращение сроков ремонта и технического обслуживания (ТО) линий, трансформаторов и распределительных устройств;

— снижение расхода энергии на собственные нужды подстанций.

Организационные мероприятия, а также мероприятия по совершенствованию систем учета электроэнергии, как правило, не требуют значительных первоначальных затрат, и поэтому их проводить всегда целесообразно.

Иначе обстоит дело с техническими мероприятиями, связанными с дополнительными капитальными вложениями.

К основным техническим мероприятиям относят:

— установку в сетях статических конденсаторов, в том числе батарей с автоматическим регулированием мощности;

— установку на РТП 110. 35/10 кВ трансформаторов с регулированием напряжения под нагрузкой (РПН);

— замену недогруженных и перегруженных трансформаторов на потребительских ТП;

— повышение пропускной способности сетей путем строительства новых линий и подстанций;

— замену проводов на перегруженных линиях, в том числе ответвлений от ВЛ напряжением 0,38 кВ к зданиям;

— перевод электрических сетей на более высокое номинальное напряжение.

Наиболее эффективное из этих мероприятий — компенсация реактивной мощности с помощью статических конденсаторов. Принцип такой компенсации параллельно включаемыми конденсаторами заключается в следующем.

Часть мощности, передаваемой по линии, а именно реактивной, не расходуется на теплоту или механическую работу, а является лишь мерой энергии, которой обмениваются магнитные поля источника и приемника. Однако ток, соответствующий реактивной мощности, протекая по линии передачи, вызывает в ней потери мощности и напряжения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *