Почему электроны движутся от минуса к плюсу
Перейти к содержимому

Почему электроны движутся от минуса к плюсу

  • автор:

Куда двигаються электроны, от + к — или наоборот?

Все знают что электрический ток — это направленный поток электронов. А куда они двигаются, эти электроны? В какую сторону? От + к — или наоборот?

Электроны, будучи отрицательно заряженными частицами, движутся от минуса к плюсу. Условно же выбранное "направление тока", изображаемое на схемах, прямо противоположное — от плюса к минусу.

От плюса к минусу, и этому есть подтверждение. Кто пользуется осеребрителем для воды, замечает, что серебряная вещица- плюсовая клемма, а то что прикреплено к "минусу", "ловит" частички серебра, которые, попутно, "застревают в водной среде, делая ее "серебряной". Само- собой, что полярность присуща постоянному току, поэтому осеребрители и работают с блоками питания 5-6 вольт постоянного тока.

Электрический ток течет от плюса к минусу. А вот поток электронов, заряженных отрицательно течет в противоположном направлении от минуса к плюсу. Так было принято с давних времен и так сохраняется до сих пор.

Движение электронов от минуса к плюсу

За направление тока условно принято движение положительных зарядов, поэтому ток в цепи протекает от плюса к минусу. Электроны заряжены отрицательно, поэтому они движутся в обратную сторону от минуса к плюсу.

«Когда Ампер предложил в первой половине 19-го столетия направление тока от плюса к минусу, все восприняли это как должное и это решение никто не стал оспаривать. Прошло 70 лет, пока люди не выяснили, что ток в металлах происходит благодаря движениям электронов. А когда они это поняли (это случилось в 1916 году), все настолько привыкли к сделанному Ампером выбору, что уже не стали ничего менять.

Все мы хорошо знаем, что электричество представляет собой направленный поток заряженных частиц в результате воздействия электрического поля. Это вам скажет любой школьник. А вот вопрос о том, каково направление тока и куда деваются эти самые частицы, многих может поставить в тупик.

Суть вопроса

Как известно, в проводнике электричество переносят электроны, в электролитах – катионы и анионы (или попросту ионы), в полупроводниках электроны работают с так называемыми «дырками», в газах – ионы с электронами. От наличия свободных элементарных частиц в том или ином материале и зависит его электропроводность. При отсутствии электрического поля в металлическом проводнике ток идти не будет. Но как только на двух его участках возникнет разность потенциалов, т.е. появится напряжение, в движении электронов прекратится хаос и наступит порядок: они начнут отталкиваться от минуса и направятся в сторону плюса. Казалось бы, вот и ответ на вопрос «Каково направление тока?». Но не тут-то было. Достаточно заглянуть в энциклопедический словарь или просто в любой учебник по физике, как сразу станет заметно некое противоречие. Там говорится, что условно словосочетание «направление тока» обозначает направленное движение положительных зарядов, другими словами: от плюса к минусу. Как быть с этим утверждением? Ведь здесь невооруженным глазом заметно противоречие!

Сила привычки

Когда люди научились составлять цепь постоянного тока, они еще не знали о существовании электрона. Тем более, в то время не подозревали что он движется от минуса к плюсу. Когда Ампер предложил в первой половине 19-го столетия направление тока от плюса к минусу, все восприняли это как должное и это решение никто не стал оспаривать. Прошло 70 лет, пока люди не выяснили, что ток в металлах происходит благодаря движениям электронов. А когда они это поняли (это случилось в 1916 году), все настолько привыкли к сделанному Ампером выбору, что уже не стали ничего менять.

«Золотая середина»

В электролитах отрицательно заряженные частицы движутся к катоду, а положительные — к аноду. То же самое происходит и в газах. Если подумать, какое направление тока будет в этом случае, в голову приходит только один вариант: перемещение разнополярных электрических зарядов в замкнутой цепи происходит навстречу друг другу. Если принять это утверждение за основу, то оно снимет существующее ныне противоречие. Возможно, это вызовет удивление, но еще более 70 лет назад ученые получили документальные подтверждения того, что противоположные по знаку электрические заряды в проводящей среде действительно движутся друг другу навстречу. Данное утверждение будет справедливо для любого проводника вне зависимости от его типа: металла, газа, электролита, полупроводника. Как бы там ни было, остается надеяться, что со временем физики устранят путаницу в терминологии и примут однозначное определение того, что же все-таки такое направление движения тока. Привычку, конечно, менять сложно, но ведь нужно же наконец поставить все на свои места.

Почему ток идет от плюса к минусу

Понимание направления тока в электрической цепи является важным элементом для понимания работы электронных устройств. Существует распространенное заблуждение, что электроны двигаются от минуса к плюсу в электрической цепи. Однако фактически ток всегда идет от плюса к минусу. В этой статье мы рассмотрим ключевые причины и объяснения этого явления.

Основная причина того, что ток идет от плюса к минусу, связана с тем, что электрический потенциал различен на разных концах цепи. Электрический потенциал обозначает работу, которую совершает электрическое поле при перемещении заряда между двумя точками в цепи. Точка с более высоким электрическим потенциалом имеет большую энергию и более сильно притягивает электроны.

В электрической цепи электроны передаются от атома к атому, передавая энергию, пока не достигнут конечной точки. При этом электроны переходят из более высокого потенциала к более низкому. Поэтому ток всегда идет от более высокого потенциала (плюс) к более низкому потенциалу (минус).

Почему ток идет от плюса к минусу: ключевые причины и объяснения — статья на сайте

Электрические поля и электронная структура атома

Движение электрического тока от плюса к минусу связано с электрическим полем, создаваемым зарядами на электроде. В кристаллических телах заряды носителей электричества (электроны или дырки) движутся в направлении электрического поля. Направление движения электронов связано с электронной структурой атома и принципом заполнения энергетических уровней.

Закон Ома и направление электрического тока

Еще одной причиной направления электрического тока от плюса к минусу является закон Ома. Согласно этому закону, направление тока всегда совпадает с направлением разности потенциалов, т.е. напряжения на проводнике. Положительное напряжение на элементе электрической цепи создается на его аноде, а отрицательное — на катоде.

Источники тока и их влияние на направление

Источники тока, такие как генераторы, батареи и аккумуляторы, также влияют на направление электрического тока в цепи. Например, при использовании однополярного источника тока, например, батареи, направление тока всегда будет одним и тем же — от плюса к минусу. Если же использовать двухполярный источник, например, генератор переменного тока, направление тока будет меняться в зависимости от периода колебаний.

Причина Объяснение
Электрическое поле Создаваемое зарядами на электроде
Закон Ома Направление тока совпадает с направлением разности потенциалов
Источники тока Генераторы, батареи и аккумуляторы влияют на направление тока в цепи

Ток — это…

Ток — это движение электрических зарядов через провода, сопротивление которых создает электрический потенциал. В этом процессе энергия передается от источника к потребителю.

Электрические заряды могут быть носителями электрона или дырок, которые движутся в направлении наименьшего электрического потенциала. Электрический потенциал создается разницей зарядов и приводит к электрическому току.

Направление тока определяется направлением движения электрических зарядов. В электрических цепях ток течет от положительной к более отрицательной точке потенциала, поэтому его направление обозначается от плюса к минусу.

Мощность тока зависит от его силы и напряжения. Сильный ток может вызвать перегрев и повреждение проводов и устройств, поэтому ограничение тока является важным аспектом обеспечения безопасности в электрических цепях.

Сравнение направления движения зарядов

Почему ток идет от плюса к минусу?

Главная причина, по которой ток идет от плюса к минусу заключается в том, что это удобно для нас людей. Мы привыкли к действию электричества так же, как мы привыкли к направлению движения времени, от прошлого к будущему. Все электрические устройства разработаны с учетом того, что ток протекает именно от плюса к минусу.

Кроме того, электрический ток является потоком заряженных частиц, поэтому он идет от области с большей концентрацией зарядов к области с меньшей концентрацией. Из-за того, что электроны являются зарядами отрицательного знака, они движутся в противоположном направлении тока, то есть от минуса к плюсу.

Также следует упомянуть, что в электрических цепях используются источники тока, такие как батареи и генераторы. Они создают разность потенциалов между двумя точками цепи, и ток начинает течь от точки высшего потенциала к точке нижнего потенциала.

  • Суммируя все вышеописанное, можно сделать вывод, что ток идет от плюса к минусу в электрических цепях.

Стоит отметить, что существует также понятие «отрицательного тока», которое возникает в некоторых случаях. Однако, это уже более сложные и специфические случаи, которые выходят за рамки данной статьи.

Важно помнить, что понимание направления тока в электрических цепях является одним из основных принципов электротехники и электроники, поэтому необходимо усвоить его в самом начале изучения этих наук.

Объяснение явления

Ток электричества — это движение электрически заряженных частиц (электронов) в проводнике. При подключении источника напряжения к проводнику, электроны начинают двигаться внутри проводника, совершая свойственное им тепловое движение.

Взаимодействие электрических зарядов является ключевым фактором, который определяет направление движения тока по проводнику. Заряды одного знака отталкиваются друг от друга, в то время как заряды разных знаков притягиваются. В проводнике каждый электрон имеет отрицательный заряд, а общий заряд проводника является положительным.

Подключение источника напряжения создает разность потенциалов между его клеммами. Высшее значение потенциала соответствует положительной клемме, а низшее значение — отрицательной. При этом, электроны, которые совершают тепловое движение, начинают двигаться в более высокую потенциальную область, переходя от отрицательной к положительной клемме. Таким образом, ток электричества движется в проводнике от более низкого потенциала (минуса) к более высокому потенциалу (плюсу).

Таким образом, знание принципов движения тока полезно для понимания не только основ работы электрических устройств, но и для различных экономических и технологических сфер.

Почему напряженность направлена от плюса к минусу

Куда двигаються электроны, от + к — или наоборот?

Все знают что электрический ток — это направленный поток электронов. А куда они двигаются, эти электроны? В какую сторону? От + к — или наоборот?

Электроны, будучи отрицательно заряженными частицами, движутся от минуса к плюсу. Условно же выбранное "направление тока", изображаемое на схемах, прямо противоположное — от плюса к минусу.

От плюса к минусу, и этому есть подтверждение. Кто пользуется осеребрителем для воды, замечает, что серебряная вещица- плюсовая клемма, а то что прикреплено к "минусу", "ловит" частички серебра, которые, попутно, "застревают в водной среде, делая ее "серебряной". Само- собой, что полярность присуща постоянному току, поэтому осеребрители и работают с блоками питания 5-6 вольт постоянного тока.

Электрический ток течет от плюса к минусу. А вот поток электронов, заряженных отрицательно течет в противоположном направлении от минуса к плюсу. Так было принято с давних времен и так сохраняется до сих пор.

Так от минуса к плюсу, или от плюса к минусу протекает электрический ток.

Ребята, ВЫ О ЧЁМ?? ?
Какая фиг разница, что, где и куда движется. ?
И вообще никуда оно на самом дедле не движется реальные скорости электронов ничтожны. Не говоря уж о том, что есть дырки, ионы, протоны. .

Ток идёт от плюса к минусу. Точка
Вот когда над описать что-то конуретное, нпример движение протонов в сульфированном полимере, или дырок в р-кремнии — вот тогда и надо заморачиваться носителями, их зарядом, концентрацией, направлением дрейфа, измерять эффект Холла и т. п.
А если этого не надо — Ток идёт от ПЛЮСА К МИНУСУ.

Ток это поток электронов. От минуса к плюсу.. .

Если конечно не рассматривать случай в ядерной физике, конкретно ускоритель положительных ионов.

Ток там тоже будет. Только направление тока там какое будет?
Вопрос как говорится на засыпку.

Ток течет от плюса к минусу: «Почему ток в цепи идёт «от плюса к минусу», если носители заряда — электроны — заряжены отрицательно и должны идти «от минуса к плюсу»?» – Яндекс.Кью – Как течет ток от п

Электрический ток – одно из основных благ цивилизации, без которого жизнь современного человечества была бы невозможна. Применяемый во всех областях современного мира (от простого электрочайника, встречающегося на кухни почти любой домохозяйки до мощной дуговой электроплавильной печи) он делает жизнь людей более удобной и простой. В то же самое время очень мало из тех, кто пользуется многочисленными электроприборами, задумывается над природой данного явления. В частности, не все понимают, что оно собой представляет, на протекании каких процессов основывается, какое направление течения заряженных частиц в проводниках и электрических цепях.


Движение зарядов в проводнике

Для того чтобы разобраться в том, как течет ток, необходимо понять его физическую сущность, основанную на атомарно-молекулярной теории строения материи, узнать, какие условия необходимы для его возникновения и существования, какие виды токов бывают, и какими характеристиками они обладают.

Физическая сущность течения тока в цепи

Наличие тока в цепи обусловлено направленным перемещением заряженных частиц. В твердых телах течение тока создается движением отрицательно заряженных электронов, в газах и жидкостях – положительными ионами. В таких широко распространенных веществах, как полупроводники, электрический ток возникает при движении частиц – электронов и «дырок» (положительно заряженных частиц, представляющих собой атомы с недостающим количеством электронов на внешних уровнях).

Основными условиями возникновения и существования электрического тока являются:

  • Наличие носителей зарядов – перемещающиеся по проводнику, газу или электролиту частицы;
  • Создаваемое определенным источником питания электрическое поле – без данного силового поля движение свободных носителей зарядов будет хаотичным, не имеющим определенного направления;
  • Замкнутая цепь – направленное движение зарядов возможно только в замкнутых цепях. Так, например, состоящий из источника питания ключа (переключатель) и лампочки накаливания ток будет протекать только тогда, когда ключ, располагающийся в разрыве проводника между одним из полюсов питания и лампой, находится во включенном состоянии, позволяя носителям заряда перемещаться по замкнутой цепи от отрицательного полюса батареи к положительному.

Ответы@Mail.Ru: в каком направлении протекает ток в цепи

направление тока — условность, принятая для рисования схем и не более того. Принято рисовать от + к -. Если проводник — метал (провод, например) — реальные носители — электроны — летят в обратную сторону — к плюсу. Если носитель жидкость с ионами или ионизированный газ — ионы летят в обе стороны…

Давненько принято считать движение тока от плюса к минусу, хотя реальное движение носителей заряда бывает обратным, в большинстве случаев.

от плюса к минусу

принято от + к -..но электрончики бегут наоборот… все схемы читаются от + к -..

Принято считать, что во ВНЕШНЕЙ ЦЕПИ направление тока от положителного полюса к отрицательному. А во внутренней, соответственно, наоборот.

В замкнутой электрической цепи ток идет от точки с большим потенциалом в точку с меньшим потенциалом и никакие + или — тут ни при чем.

Двести лет тому назад Фарадей поставил опыт, где демонстрируется получение тока в гальванометре при движении магнита в катушке индуктивности. Сегодня, осмысляя этот опыт, приходится делать вывод: современная теория тока проводимости в металлических проводниках ошибочна потому, что основой этой теории является движение свободных электронов при неподвижных ионах. Опыт же Фарадея демонстрирует движение, как отрицательных, так и положительных зарядов. А так как в проводнике, кроме подвижных электронов и неподвижных ионов, других зарядов нет, то следует сделать вывод: Фарадей двести лет тому назад получил, в качестве тока проводимости, электронно-позитронный ток, распространяющийся в эфире вокруг проводников.

Электрический ток и поток электронов

Единица измерения силы тока

Разобравшись в том, что в большинстве случаев носителями электрических зарядов являются электроны, необходимо понять, почему они движутся. Для этого необходимо заглянуть в микромир частиц – атомов и понять их строение, физические процессы, происходящие с ними.

Атом состоит из ядра и вращающихся вокруг него множества электронов, количество которых зависит от суммарного заряда ядра. Электроны передвигаются по определенным траекториям – орбиталям (уровням). При этом те из них, которые располагаются ближе всего к ядру, удерживаются им очень сильно и не участвуют в химических реакциях и физических процессах. Те частицы, которые находятся на внешних уровнях, являются активными и определяющими способность того или иного атома к химическому взаимодействию и образованию свободных зарядов. Их называют валентными.


Ядро и электроны

Активность и способность атомов к отщеплению свободных электронов зависят от количества частиц на внешних уровнях. Так, у одних веществ многочисленные электроны удалены от ядра, поэтому срываются со своих орбиталей и начинают устремляться к другим атомам, в результате чего наблюдается перемещение свободных зарядов. При подаче электрических потенциалов (напряжения) движение электронов становится направленным, появляется электрический ток. Поэтому твердые тела (например, металлы) с большим количеством свободных электронов являются проводниками.

У диалектиков частицы, способные переносить электрический заряд, отсутствуют – у них мало электронов на внешних уровнях, поэтому они не могут срываться, переходя сначала в хаотичное, потом и в направленное движение.

Промежуточное положение между диэлектриками и проводниками занимают полупроводники, электропроводность которых зависит от внешних факторов (температуры, освещенности и т.д.).

Электрический ток в параллельной цепи

Закон Ома для неоднородного участка

В электрических схемах предусмотрены параллельные и последовательные соединения элементов. При параллельном соединении, например, резисторов, напряжение одинаково для каждого из них, а сила тока, протекающего через каждый элемент, пропорциональна его сопротивлению. Чтобы определить величину тока через каждый компонент при параллельной комбинации их соединения, используют закон Ома.


Параллельная электрическая цепь

Защита от токов короткого замыкания

Что можно сказать в заключение. Если вы планируете сделать ремонт электропроводки своими руками или модернизировать существующую, почитайте эту статью . Крайне внимательно отнеситесь к выбору аппаратов защиты вашей сети. Важный совет: когда устанавливаете или будете устанавливать новый автомат, УЗО или диффавтомат, внимательно прочитайте бумагу, которая идет в комплекте. В ней содержится такой пункт, как срок эксплуатации и срок поверки. В течении срока эксплуатации производитель дает гарантию, что устройство будет выполнять свои основные функции. Срок поверки указывает на период, в течение которого могут измениться параметры срабатывания защиты, то есть через указанный промежуток времени желательно (а я бы даже сказал обязательно) либо сделать поверку автомата, либо заменить (благо, не так дорого он стóит). Кстати, пробки с плавкими предохранителями в поверке не нуждаются. Не забывайте делать регулярный осмотр электропроводки и как минимум раз в год протягивать винтовые соединения на автоматах и шинах нулевых и заземляющих проводов. Не забывайте про заземление — оно поможет вовремя выявить устройства с поврежденной изоляцией.

Источники напряжения обычно называют источниками питания. Для увеличения тока или напряжения, а может и того и другого источники питания (элементы, батареи) могут соединяться вместе. Существует три типа соединения элементов питания: 1. Последовательное соединение элементов. 2. Параллельное соединение элементов. 3. Последовательно-параллельное (смешанное) соединение элементов.

Вид цепи и напряжение

В зависимости от направления протекания тока и особенностей напряжения, различают два вида электрических цепей:

  • Цепи постоянного тока;
  • Цепи переменного тока.

Cила тока: формула

Напряжение цепей постоянного тока является работой, совершаемой электрическим полем в ходе перемещения пробного плюсового заряда из точки A в точку Б. Напряжение в цепи постоянного тока определяется как разность потенциалов на его концах. В таких цепях принято считать, что ток идет от плюса к минусу (от плюсового полюса к минусовому).

На заметку. В реальности ток течет не от плюса к минусу, а, наоборот, от минуса к плюсу. Сформировавшееся ошибочное представление о направлении течения именно от плюса не стали изменять и оставили для удобства понимания физической сущности данного явления.

Для цепей переменного тока характерны такие виды и значения напряжения, как:

  • мгновенное;
  • амплитудное;
  • среднее значение;
  • среднеквадратическое;
  • средневыпрямленное.

Напряжение в таких цепях – это достаточно сложная функция времени. Грубо говоря, ток в них течет от фазного провода, проходит через нагрузку и частично уходит в нулевой (течет от фазы к нулю)

Базовые понятия о электричестве

Прежде чем приступить к работам, связанным с электричеством, необходимо немного «подковаться» теоретически в этом вопросе.Если говорить просто, то обычно под электричеством подразумевается это движение электронов под действием электромагнитного поля.

Главное — понять, что электричество — энергия мельчайших заряженных частиц, которые движутся внутри проводников в определенном направлении(рис. 1.1).

Движение электронов в проводнике

Постоянный ток практически не меняет своего направления и величины во времени. Допустим, в обычной батарейке постоянный ток. Тогда заряд будет перетекать от минуса к плюсу, не меняясь, пока не иссякнет.

Переменный ток — это ток, который с определенной периодичностью меняет направление движения и величину. Представьте ток как поток воды, текущий по трубе. Через какой-то промежуток времени (например, 5 с) вода будет устремляться то в одну сторону, то в другую.

С током это происходит намного быстрее — 50 раз в секунду (частота 50 Гц). В течение одного периода колебания величина тока повышается до максимума, затем проходит через ноль, а потом происходит обратный процесс, но уже с другим знаком.

На вопрос, почему так происходит и зачем нужен такой ток, можно ответить, что получение и передача переменного тока намного проще, чем постоянного.

Получение и передача переменного тока тесно связаны с таким устройством, как трансформатор (рис. 1.2).

Трансформатор на подстанции понижает напряжение от высоковольтной линии для передачи в бытовую сеть

Генератор, который вырабатывает переменный ток, по устройству гораздо проще, чем генератор постоянного тока. Кроме того, для передачи энергии на дальнее расстояние переменный ток подходит лучше всего. С его помощью при этом теряется меньше энергии.

При помощи трансформатора (специального устройства в виде катушек) переменный ток преобразуется с низкого напряжения на высокое и наоборот, как это представлено на иллюстрации (рис. 1.3).

Виды токов: постоянные и переменные

В зависимости от изменения направления протекания заряженных частиц, различают следующие виды токов:

  • Постоянный – формируется движением заряженных частиц в одном направлении. Его основные характеристики (сила тока, напряжение) имеют постоянные значения и не изменяются во времени;
  • Переменный – направление перемещения зарядов при таком виде движения заряженных частиц периодически меняется. Количество изменений направления движения за единицу времени, равную одной секунде, называется частотой тока и измеряется в Герцах. Так, например, значение данной характеристики в обычной бытовой электрической цепи равно 50 Гц. Это означает, что в течение 1 секунды движущиеся по цепи электроны меняют свое направление 50 раз, вызывая тем самым такое же количество изменений напряжения в фазном проводе от 220 до 0 В.


Основные характеристики переменного тока

Как течет ток от плюса к минусу

Тема: в какую сторону идёт ток в проводах, электрических цепях, схемах.

Электрический ток представляет собой упорядоченное движение заряженных частиц. В твердых телах это движение электронов (отрицательно заряженных частиц) в жидких и газообразных телах это движение ионов (положительно заряженных частиц). Более того ток бывает постоянным и переменным, и у них совсем разное движение электрических зарядов. Чтобы хорошо понять и усвоить тему движение тока в проводниках пожалуй сначала нужно более подробно разобраться с основами электрофизики. Именно с этого я и начну.
Итак, как вообще происходит движение электрического тока? Известно, что вещества состоят из атомов. Это элементарные частицы вещества. Строение атома напоминает нашу солнечную систему, где в центре расположено ядро атома. Оно состоит из плотно прижатых друг к другу протонов (положительных электрических частиц) и нейтронов (электрически нейтральных частиц). Вокруг этого ядра с огромной скоростью по своим орбитам вращаются электроны (более мелкие частицы, имеющие отрицательный заряд). У разных веществ количество электронов и орбит, по которым они вращаются, может быть различным. Атомы твердых веществ имеют так называемую кристаллическую решетку. Это структура вещества, по которой в определенной порядке располагаются атомы относительно друг друга.

А где же тут может возникнуть электрический ток? Оказывается, что у некоторых веществ (проводников тока) электроны, что наиболее удалены от своего ядра, могут отрываться от атома и переходить на соседний атом. Это движение электронов называется свободным. Просто электроны перемещаются внутри вещества от одного атома к другому. Но вот если к этому веществу (электрическому проводнику) подключить внешнее электромагнитное поле, тем самым создав электрическую цепь, то все свободные электроны начнут двигаться в одном направлении. Именно это и есть движение электрического тока внутри проводника.

Двунаправленное перемещение зарядов

Наряду с упорядоченным движением носителей зарядов (электронов), в проводниках наблюдается также незначительный обратный процесс – условное перемещение положительных зарядов, потерявших отрицательные частицы атомов. Вместе с основным током данное явление получило название двунаправленное перемещение зарядов. Особенно оно ярко проявляется при протекании электричества через электролиты (явление электролиза).


Двунаправленное перемещение зарядов в аккумуляторной батарее

Значение перемещения электронов в электрической схеме

Понимание того, как идет в цепи ток, необходимо при составлении такого графического изображения расположения электронных деталей, как схема. Важно понимать, откуда течет ток, для того чтобы правильно располагать на схеме, затем соединять различные радиоэлектронные элементы. Если для таких радиодеталей, как конденсатор, резистор, полярность подключения не имеет значения, то полупроводниковый транзистор,

диод необходимо размещать на схеме и затем запитывать, учитывая направление движения тока, иначе они и собираемое с их использованием устройство, электронный блок не будут правильно функционировать.

Таким образом, знание физической сущности направления течения заряженных частиц в проводнике, электролите, полупроводнике позволит любому человеку не только расширить свой кругозор, но и применять его на практике при монтаже электропроводки, пайке различных электронных блоков и схем. Также подобная информация поможет разобраться в том, почему произошла поломка того или иного электроприбора, как ее устранить и предотвратить в будущем.

Открытие: ток течёт не от плюса к минусу, а от фазы к нулю

Электрический ток – одно из основных благ цивилизации, без которого жизнь современного человечества была бы невозможна. Применяемый во всех областях современного мира (от простого электрочайника, встречающегося на кухни почти любой домохозяйки до мощной дуговой электроплавильной печи) он делает жизнь людей более удобной и простой. В то же самое время очень мало из тех, кто пользуется многочисленными электроприборами, задумывается над природой данного явления. В частности, не все понимают, что оно собой представляет, на протекании каких процессов основывается, какое направление течения заряженных частиц в проводниках и электрических цепях.


Движение зарядов в проводнике

Для того чтобы разобраться в том, как течет ток, необходимо понять его физическую сущность, основанную на атомарно-молекулярной теории строения материи, узнать, какие условия необходимы для его возникновения и существования, какие виды токов бывают, и какими характеристиками они обладают.

Физическая сущность течения тока в цепи

Наличие тока в цепи обусловлено направленным перемещением заряженных частиц. В твердых телах течение тока создается движением отрицательно заряженных электронов, в газах и жидкостях – положительными ионами. В таких широко распространенных веществах, как полупроводники, электрический ток возникает при движении частиц – электронов и «дырок» (положительно заряженных частиц, представляющих собой атомы с недостающим количеством электронов на внешних уровнях).

Основными условиями возникновения и существования электрического тока являются:

  • Наличие носителей зарядов – перемещающиеся по проводнику, газу или электролиту частицы;
  • Создаваемое определенным источником питания электрическое поле – без данного силового поля движение свободных носителей зарядов будет хаотичным, не имеющим определенного направления;
  • Замкнутая цепь – направленное движение зарядов возможно только в замкнутых цепях. Так, например, состоящий из источника питания ключа (переключатель) и лампочки накаливания ток будет протекать только тогда, когда ключ, располагающийся в разрыве проводника между одним из полюсов питания и лампой, находится во включенном состоянии, позволяя носителям заряда перемещаться по замкнутой цепи от отрицательного полюса батареи к положительному.

Почему принято считать, что электрический ток движется от положительного заряда к отрицательному?

старший научный сотрудник Института ядерной физики им. Г. И. Будкера СО РАН, кандидат физико-математических наук Евгений Михайлович Балдин.

Достоверно известно, что электрический ток — это направленное движение электронов или, в некоторых случаях, положительных или отрицательных ионов. Электричество как таковое также связано с понятием ЭДС, то есть для тока в проводнике нужна разность потенциалов.

Тогда направление движения тока при движении электронов и отрицательно заряженных ионов будет от отрицательного полюса к положительному, так как одноименные заряды отталкиваются, а разноименные притягиваются.

Движение же положительных ионов будет связано с движением обратным по направлению.

Почему тогда официально считается, что ток идет всегда от плюса к минусу и такое же направление указывается на электрических схемах?! Преподаватели физики мне отвечали, что так сложилось исторически, но ведь в двух случаях из трех это ошибка. Так тогда как понимать?

Дело в том, что электрический ток стали изучать задолго до того, как разобрались с его «переносчиками». Наверное, первые систематические опыты с ним можно датировать 1801 годом, когда итальянский учёный Алессандро Вольта опустил в банку с кислотой две пластинки — цинковую и медную.

Так возникла первая батарея — Вольтов столб, хотя, безусловно, электрические явления не были в тот период новостью. Например, в то же время Бруньятелли осуществил посеребрение, оцинкование и омеднение электродов. Позже последовали опыты Эрстеда, Ампера, Ома, Фарадея и множества других исследователей.

В 1861-1862 годах английский физик Джеймс Кларк Максвелл опубликовал свои труды, которые привели к возникновению четырёх уравнений Максвелла — своеобразное обобщение всех классических электрических и магнитных явлений. Исследования об электричестве и магнетизме стали единой классической электродинамикой.

То есть на тот момент людям уже пришлось договориться о единых понятиях направления тока, но что именно выступает в проводниках в качестве переносчика зарядов, тогда известно не было.

Электроны в чистом виде были выделены только в 1869 году немецким исследователем Иоганном Вильгельом Гитторфом, когда он впервые наблюдал катодные лучи — потоки электронов, испускаемых катодом.

Они используются в старых телевизорах, осциллографах, радиолампах и электронных микроскопах.

Это случилось уже позже формирования уравнений Максвелла, кроме того, на осознание, что именно такое катодные лучи, то есть на собственно открытие электрона ушло ещё 28 лет, пока этим вопрос вплотную не занялся английский физик Джозеф Джон Томсон.

Поделись с друзьями:

Электрический ток и поток электронов

Единица измерения силы тока

Разобравшись в том, что в большинстве случаев носителями электрических зарядов являются электроны, необходимо понять, почему они движутся. Для этого необходимо заглянуть в микромир частиц – атомов и понять их строение, физические процессы, происходящие с ними.

Атом состоит из ядра и вращающихся вокруг него множества электронов, количество которых зависит от суммарного заряда ядра. Электроны передвигаются по определенным траекториям – орбиталям (уровням). При этом те из них, которые располагаются ближе всего к ядру, удерживаются им очень сильно и не участвуют в химических реакциях и физических процессах. Те частицы, которые находятся на внешних уровнях, являются активными и определяющими способность того или иного атома к химическому взаимодействию и образованию свободных зарядов. Их называют валентными.


Ядро и электроны

Активность и способность атомов к отщеплению свободных электронов зависят от количества частиц на внешних уровнях. Так, у одних веществ многочисленные электроны удалены от ядра, поэтому срываются со своих орбиталей и начинают устремляться к другим атомам, в результате чего наблюдается перемещение свободных зарядов. При подаче электрических потенциалов (напряжения) движение электронов становится направленным, появляется электрический ток. Поэтому твердые тела (например, металлы) с большим количеством свободных электронов являются проводниками.

У диалектиков частицы, способные переносить электрический заряд, отсутствуют – у них мало электронов на внешних уровнях, поэтому они не могут срываться, переходя сначала в хаотичное, потом и в направленное движение.

Промежуточное положение между диэлектриками и проводниками занимают полупроводники, электропроводность которых зависит от внешних факторов (температуры, освещенности и т.д.).

Новые плюсы и минусы законопроекта о туристических ваучерах

Фаза или ноль на выключатель ?

Принцип работы стандартного, знакомого всем выключателя света довольно прост, при нажатии клавиши он физически разрывает (или соединяет) электрическую цепь, проложенную к люстре, бра или любому другому светильнику.

А так как для работы светильника нужен фазный и нулевой проводники, установить выключатель, фактически, можно в разрыв любого из них, при этом система будет работать, на первый взгляд, одинаково правильно.

Возможно, именно поэтому довольно часто возникает вопрос, что по правилам должен размыкать выключатель фазу или ноль и почему?

На первую часть этого вопроса, а именно, что должен разрывать выключатель фазу или ноль, есть ответ в ПУЭ, правилах устройства электроустановок, основном документе, который регламентирует правила и нормы электромонтажа.

В, последнем, актуальном на сегодняшний день, 7-ом издании ПУЭ, в пункте 6.6.28, указано следующее:

В трех- или двухпроводных однофазных линиях сетей с заземленной нейтралью могут использоваться однополюсные выключатели, которые должны устанавливаться в цепи фазного провода, или двухполюсные, при этом должна исключаться возможность отключения одного нулевого рабочего проводника без отключения фазного.

Как видите правила прямо говорят, что выключатель света устанавливается в разрыв фазного проводника, а не нулевого и только так, а не иначе нужно выполнять монтаж.

Правильная схема подключения одноклавишного выключателя выглядят так:

Почему именно фазу, а не ноль должен разрывать выключатель света ?

На первый взгляд нет никакой разницы обе схемы работают одинаково, ведь и при разрыве нуля выключателем, свет так же погаснет, как и при разрыве фазы.

Чтобы лучше разобраться в этом, давайте, для наглядности, рассмотрим схему подключения выключателя, в которой к нему подведен нулевой проводник (ноль).

Как вы видите, при такой схеме подключения выключателя, на светильнике всегда есть напряжение, это и есть тот главный недостаток, который может вызывать серьезные проблемы и неудобства в работе и обслуживании источников света.

В первую очередь, главная опасность такого способа подключения состоит в том, что вас может “ударить током”, например, при замене ламп, когда вы случайно коснётесь токопроводящих контактов.

Электрический ток в параллельной цепи

Закон Ома для неоднородного участка

В электрических схемах предусмотрены параллельные и последовательные соединения элементов. При параллельном соединении, например, резисторов, напряжение одинаково для каждого из них, а сила тока, протекающего через каждый элемент, пропорциональна его сопротивлению. Чтобы определить величину тока через каждый компонент при параллельной комбинации их соединения, используют закон Ома.


Параллельная электрическая цепь

Вид цепи и напряжение

В зависимости от направления протекания тока и особенностей напряжения, различают два вида электрических цепей:

  • Цепи постоянного тока;
  • Цепи переменного тока.

Cила тока: формула

Напряжение цепей постоянного тока является работой, совершаемой электрическим полем в ходе перемещения пробного плюсового заряда из точки A в точку Б. Напряжение в цепи постоянного тока определяется как разность потенциалов на его концах. В таких цепях принято считать, что ток идет от плюса к минусу (от плюсового полюса к минусовому).

На заметку. В реальности ток течет не от плюса к минусу, а, наоборот, от минуса к плюсу. Сформировавшееся ошибочное представление о направлении течения именно от плюса не стали изменять и оставили для удобства понимания физической сущности данного явления.

Для цепей переменного тока характерны такие виды и значения напряжения, как:

  • мгновенное;
  • амплитудное;
  • среднее значение;
  • среднеквадратическое;
  • средневыпрямленное.

Напряжение в таких цепях – это достаточно сложная функция времени. Грубо говоря, ток в них течет от фазного провода, проходит через нагрузку и частично уходит в нулевой (течет от фазы к нулю)

Что значит минус и плюс в электрике. Базовые понятия в электрике

Прежде чем приступить к работам, связанным с электричеством, необходимо немного «подковаться» теоретически в этом вопросе. Если говорить просто, то обычно под электричеством подразумевается это движение электронов под действием электромагнитного поля. Главное — понять, что электричество — энергия мельчайших заряженных частиц, которые движутся внутри проводников в определенном направлении.

Постоянный ток

практически не меняет своего направления и величины во времени. Допустим, в обычной батарейке постоянный ток. Тогда заряд будет перетекать от минуса к плюсу, не меняясь, пока не иссякнет.

Переменный ток

— это ток, который с определенной периодичностью меняет направление движения и величину.

Представьте ток как поток воды, текущий по трубе. Через какой-то промежуток времени (например, 5 с) вода будет устремляться то в одну сторону, то в другую. С током это происходит намного быстрее — 50 раз в секунду (частота 50 Гц). В течение одного периода колебания величина тока повышается до максимума, затем проходит через ноль, а потом происходит обратный процесс, но уже с другим знаком. На вопрос, почему так происходит и зачем нужен такой ток, можно ответить, что получение и передача переменного тока намного проще, чем постоянного.

Получение и передача переменного тока тесно связаны с таким устройством, как трансформатор. Генератор, который вырабатывает переменный ток, по устройству гораздо проще, чем генератор постоянного тока. Кроме того, для передачи энергии на дальнее расстояние переменный ток подходит лучше всего. С его помощью при этом теряется меньше энергии.

При помощи трансформатора (специального устройства в виде катушек) переменный ток преобразуется с низкого напряжения на высокое и наоборот, как это представлено на иллюстрации. Именно по этой причине большинство приборов работает от сети, в которой ток переменный. Однако постоянный ток также применяется достаточно широко — во всех видах батарей, в химической промышленности и некоторых других областях.

Многие слышали такие загадочные слова, как одна фаза, три фазы, ноль, заземление или земля, и знают, что это важные понятия в мире электричества. Однако не все понимают, что они обозначают и какое отношение имеют к окружающей действительности. Тем не менее знать это обязательно. Не углубляясь в технические подробности, которые не нужны домашнему мастеру, можно сказать, что трехфазная сеть — это такой способ передачи электрического тока, когда переменный ток течет по трем проводам, а по одному возвращается назад. Вышесказанное надо немного пояснить. Любая электрическая цепь состоит из двух проводов. По одному ток идет к потребителю (например, к чайнику), а по другому возвращается обратно. Если разомкнуть такую цепь, то ток идти не будет. Вот и все описание однофазной цепи.

Тот провод, по которому ток идет, называется фазовым, или просто фазой, а по которому возвращается — нулевым, или нолем. Трехфазная цепь состоит из трех фазовых проводов и одного обратного. Такое возможно потому, что фаза переменного тока в каждом из трех проводов сдвинута по отношению к соседнему на 120 °C. Более подробно на этот вопрос поможет ответить учебник по электромеханике. Передача переменного тока происходит именно при помощи трехфазных сетей. Это выгодно экономически — не нужны еще два нулевых провода.

Подходя к потребителю, ток разделяется на три фазы, и каждой из них дается по нолю. Так он попадает в квартиры и дома. Хотя иногда трехфазная сеть заводится прямо в дом. Как правило, речь идет о частном секторе, и такое положение дел имеет свои плюсы и минусы. Об этом будет рассказано позднее. Земля, или, правильнее сказать, заземление — третий провод в однофазной сети. В сущности, рабочей нагрузки он не несет, а служит своего рода предохранителем. Это можно объяснить на примере. В случае, когда электричество выходит из-под контроля (например, короткое замыкание), возникает угроза пожара или удара током. Чтобы этого не произошло (то есть значение тока не должно превышать безопасный для человека и приборов уровень), вводится заземление. По этому проводу избыток электричества в буквальном смысле слова уходит в землю.

Еще один пример. Допустим, в работе электродвигателя стиральной машины возникла небольшая поломка и часть электрического тока попадает на внешнюю металлическую оболочку прибора. Если заземления нет, этот заряд так и будет блуждать по стиральной машине. Когда человек прикоснется к ней, он моментально станет самым удобным выходом для данной энергии, то есть получит удар током. При наличии провода заземления в этой ситуации излишний заряд стечет по нему, не причинив никому вреда. В дополнение можно сказать, что но- левой проводник также может быть заземлением и, в принципе, им и является, но только на электростанции. Ситуация, когда в доме нет заземления, небезопасна. Как с ней справиться, не меняя всю проводку в доме, будет рассказано в дальнейшем.

Внимание!

Некоторые умельцы, полагаясь на начальные знания по электротехнике, устанавливают нулевой провод как заземляющий. Никогда так не делайте. При обрыве нулевого провода корпуса заземленных приборов окажутся под напряжением 220 В.

Рис. 1. Взаимодействие положительных и отрицательных зарядов электричества

Автор этого учебника руководствовался старыми знаниями, согласно которым в проводах могут присутствовать, как положительные заряды + (протоны), так и отрицательные заряды — (электроны). Он не знает, что протоны находятся глубоко в ядрах атомов. В свободном состоянии могут находиться лишь протоны атомов водорода в электролитических растворах и это состояние предельно краткосрочное . Но авторы учебников по физике и химии е знают этого и продолжают калечить интеллектуальный потенциал своих учеников. Вот текст из школьного учебника «Физика и химия» .

Эти же знаки (+) и (-) устанавливаются на клеммах аккумуляторов, батарей, конденсаторов, диодов, выпрямителей и т. д. Они понимаются, как положительные и отрицательные заряды электричества — протоны и электроны. Они же фигурируют и в неисчислимых трудах физиков — теоретиков, стремящихся описать их взаимодействия в различных физических явлениях и процессах. Но эра теоретического самовольства и самодовольства на исходе, так как главный судья достоверности физических теорий уже вступил в свои права. Недалёк тот день, когда старшеклассник, обученный проверке достоверности теоретического результата с помощью аксиомы Единства, легко сможет установить, что унитарная квантовая теория противоречит этой аксиоме. Этого достаточно, чтобы оставить её в покое на полке истории науки.

Итак, выпрямитель, включаемый в цепь переменного напряжения и тока, формирует на выходе плюс и минус. Уважаемые физики-теоретики! Как прикажете понимать это?

Ведь одновременное присутствие в проводах протонов и электронов автоматически ведёт к формированию атомов водорода, которые существуют лишь в плазменном состоянии при температуре более 5000 градусов. Из этого однозначно следует, что в проводах нет свободных протонов — носителей положительных зарядов, а есть только электроны. Зачем же пишите на клеммах конденсаторов, выпрямителей, диодов знаки плюс и минус? Ведь они ассоциируются с положительными и отрицательными зарядами электричества! Но в проводах с электрическим напряжением нет свободных протонов — носителей положительных зарядов. Как прикажете понимать эту путаницу, которую Вы закладываете в головы учащейся молодёжи на всю жизнь?! Если Вы считаете, что электроны приходят только на отрицательные пластины конденсаторов, а на положительные не приходят (боятся, наверное) и они остаются свободными от зарядов, то зачем же Вы приписываете им знак плюс, который ассоциируется с положительным зарядом электричества — протоном? Вы трубите во всех своих трудах и учебниках, что электроны движутся по проводам с постоянным напряжением от минуса к плюсу. Интересное дело. Почему же тогда они, согласно Вашим представлениям, не движутся по электрической цепи от минусовой пластины конденсатора к плюсовой при его зарядке. Почему Вы миритесь с обилием этих Ваших противоречий.

Забавляйтесь своими противоречивыми теоретическими творениями и представлениями самостоятельно, но не навязывайте их молодому поколению, которое имеет возможность проверить Ваши «гениальные» теоретические построения не только с помощью аксиомы Единства, но экспериментально, с помощью самого простого и самого древнего прибора — компаса.

Известно, что электроны, движущиеся по проводу, формируют вокруг него направленное магнитное поле. Поскольку стрелка компаса чётко реагирует на изменение направления магнитного поля, то показаний этого древнего прибора достаточно для определения направления движения электронов по проводу (рис. 2).

На рис. 2 показана электрическая схема, направления проводов которой сориентированы плюсовыми концами на юг (S), а минусовыми — на север (N). При отсутствии тока в проводе направление стрелок компасов А, В, С и D совпадают с направлением правого и левого проводов на север N. При включении тока вокруг провода возникает магнитное поле и стрелки компасов отклоняются .

Когда электроны движутся по проводу в направлении с юга (S) на север (N), то стрелка компаса A, расположенного над проводом, отклоняется вправо, а стрелка компаса B, расположенного под проводом, — влево (табл. 1).

Таблица 1. Углы отклонения стрелок компасов A и B при различных токах (рис. 2)

Из этих элементарных экспериментальных результатов следует, что магнитное поле вокруг провода закручено против хода часовой стрелки и имеет магнитный момент .

Уважаемые физики -теоретики, Вам пора уже знать, что формированием и поведением электрона (рис. 3) управляют 23 константны . Наличие модели электрона с известным направлением вектора его магнитного момента (рис. 3) даёт нам основание полагать, что магнитное поле вокруг провода формируется совокупностью магнитных полей свободных электронов, сориентированных вдоль провода таким образом, что направления векторов магнитных моментов каждого электрона совпадает с направлением вектора магнитного момента поля, образующегося вокруг провода (рис. 2 и 4).

Рис. 3. а) схема теоретической модели электрона

(показана лишь часть магнитных силовых линий)

Рис. 4. Схема движения электронов в проводе от плюса (+) к минусу (-) и формирования на его концах южного (S) и северного (N) магнитных полюсов и магнитного поля

Те же электроны (рис. 2), которые движутся по правому проводу с севера (N) на юг (S), формируют вокруг него противоположно направленное магнитное поле и стрелки аналогичных компасов С и D отклоняются противоположно отклонению стрелок компасов А и В (рис. 2). Из схемы магнитного поля вокруг провода (рис. 4) следует, что оно может быть сформировано лишь в том случае, если северные магнитные полюса электронов (рис. 3) направлены вверх в сторону минусового конца провода, а южные — вниз, в сторону плюсового конца провода (рис. 4).

Итак, результаты эксперимента, представленные на рис. 2 и в табл. 1, показывают, что направление магнитного поля, формирующегося вокруг провода, совпадает с направлением вращения свободных электронов в нём (рис. 2, 4), поэтому направление тока совпадает с направлением движения электронов
от плюса к минусу
, .

Неопровержимость этого факта подтверждена ещё в 1984 году другим элементарным экспериментом, поставленным инженером А.К Сухвал . Он взял подковообразный магнит из электромагнитного материала с напряжённостью магнитного поля порядка 500 Э и присоединил к его полюсам щупы чувствительного микроамперметра, который начал показывать ток порядка 0,10-0,20 μΑ (рис. 5).

Рис. 5. Эксперимент инженера А.К. Сухвал

При этом плюсовой щуп микроамперметра подсоединялся к южному полюсу S магнита, а минусовой — к северному N. Это убедительное доказательство движения электронов по проводам микроамперметра от плюса к минусу, а точнее от южного магнитного полюса к северному. Особо отметим, что эту информацию мы получили 15.06.09, то есть значительно позже того, как описали процесс движения электронов от плюса к минусу и многократно опубликовали его.

Уважаемые физики — теоретики и педагоги, почему Вы не понимаете, что навязывание школьникам и студентам ошибочных представлений о том, что электроны движутся в проводах от минуса к плюсу, а ток течёт в обратном направлении является интеллектуальным преступлением?

Итак, направления силовых линий магнитного поля, образующегося вокруг провода с током, соответствуют такой ориентации свободных электронов в нём, при которой они движутся от плюса к минусу, ориентируясь так, что южные полюса магнитных полей электронов оказываются направленными к плюсовому концу провода, а северные — к минусовому (рис. 2, 4).

Этот простой, легко воспроизводимый эксперимент, ярко демонстрирует, что если источником питания является аккумулятор или батарея, то электроны движутся по проводам

от плюса (рис. 2, 4) к минусу. Такая картина полностью согласуется со структурой электронов (рис. 3) и однозначно доказывает, что свободные электроны провода с постоянным напряжением повёрнуты южными магнитными полюсами к положительному концу провода, а северными — к отрицательному. В этом случае не требуется присутствие в проводах свободных протонов для формирования положительного потенциала, так как свободные электроны провода формируют на его концах не разноимённые электрические заряды, а разноимённые магнитные полюса.

Из новых представлений о поведении электронов в проводе следует необходимость заменить представления о плюсовом и минусовом концах проводов сети с постоянным напряжением на концы с северным и южным магнитными полюсами. Однако, процесс реализации этой необходимости будет длительный. Но он, как мы увидим дальше, неизбежен, так как углубление представлений о реальных электродинамических процессах невозможно без новых условностей в обозначении концов электрических проводов.

Таким образом, элементарная экспериментальная информация, которую мы привели, позволяет сформулировать первые предположения (постулаты) о структуре электрона и его движении вдоль провода. Для этого обратим внимание на то, что экспериментальный провод сориентирован с юга (S) на север (N) и южный конец этого провода подключён к плюсовой (+) клемме генератора (G) постоянного тока или к плюсовой клемме выпрямителя.

Итак, формулируем постулаты. Первый — электроны, движутся по проводу не от плюса (+) к минусу (-), как считалось, а от южной клеммы к северной. Второй — электроны имеют вращающуюся электромагнитную структуру. Третий — электроны вращаются против часовой стрелки и имеют собственные магнитные моменты . Четвёртый — магнитные поля движущихся и вращающихся свободных электронов в проводах формируют суммарное магнитное поле, которое выходит за пределы провода. Направление вектора магнитного момента вокруг провода совпадает с направлениями векторов магнитных моментов электронов (рис. 4).

А теперь проведём эксперимент по зарядке и разрядке конденсатора. Ориентацию проводов и электрических знаков потенциалов на их концах оставим прежней и посмотрим куда движутся электроны, заряжая конденсатор (рис. 5).

2. Зарядка диэлектрического конденсатора

Ошибочность существующей интерпретации работы конденсатора особенно очевидна. Она базируется на присутствии в электрической цепи положительных и отрицательных зарядов. Носители этих зарядов известны: протон и электрон. Однако, также известно, что они чувствуют присутствие друг друга на расстоянии в тысячу раз большем размера электрона и в миллион раз большем размера протона . Даже такое их далёкое соседство заканчивается процессом формирования атомов водорода, которые существуют лишь в плазменном состоянии при температуре более 5000 С. Это происходит, например, в процессах удаления электронов и протонов от Солнца и последующего объединения их в атомы водорода . Так что совместное присутствие протонов и электронов в свободном состоянии в проводниках полностью исключается, поэтому положительный и отрицательный потенциалы на пластинах диэлектрического конденсатора — ошибка физиков. Исправим её.

Сейчас мы увидим, что пластины диэлектрического конденсатора заряжаются не разноимённой электрической полярностью, а разноимённой магнитной полярностью. При этом функции плюса принадлежат южному магнитному полюсу электрона, а функции минуса — северному (рис. 3). Эти полюса и формируют полярность, но не электрическую, а магнитную. Проследим процесс зарядки диэлектрического конденсатора, чтобы увидеть, как магнитные полюса электрона формируют магнитную полярность его пластин. Известно, что между платинами диэлектрического конденсатора находится диэлектрик D (рис. 5).

Схема эксперимента по зарядке диэлектрического конденсатора показана на рис. 5, а. Самое главное требование к схеме — ориентация её с юга (S) на север (N) так, чтобы положительные знаки электрических потенциалов были на юге, а отрицательные — на севере. Чтобы обеспечить полную изоляцию конденсатора от сети после его зарядки, желательно использовать электрическую вилку, кратковременно включаемую в розетку сети с напряжением 220 V.

Сразу после диода d показан компас 1 (К), положенный на провод, идущий к конденсатору С. Стрелка этого компаса, отклоняясь вправо в момент включения вилки, показывает направление движения электронов (рис. 5, а) от точки S к нижней пластине конденсатора, имеющей знак минус.

а) схема нашего эксперимента зарядки конденсатора;

B) схема реализации этого эксперимента американскими учёными

Тут уместно обратить внимание на общность информации о поведении электронов в проводах, представленной на рис. 2, 4, и 5. Выше компаса 1 (рис. 5) показана схема направления магнитного поля вокруг провода, формируемого движущимися в нём электронами. Эта схема аналогична схемам, показанным на рис. 2.

Ученые из Калифорнийского университета в Санта-Барбаре предложили свою интерпретацию зарядки конденсатора, в которой при подаче электрического напряжения на его обкладках накапливался бы не только электрический заряд электронов, но и, как они считают, их спин.

Спиновый () конденсатор (рис. 5, b) — диэлектрический материал (обозначен голубым цветом) зажат между обкладками из ферромагнитного материала (обозначены желтым цветом). Красным показана плотность спин-поляризованных электронов, достигающая максимумов величины на поверхностях раздела и противоположная по знаку на противоположных обкладках конденсатора

Американцы сообщают, что данный эффект является пока результатом численного моделирования, но уже мало кто сомневается в его существовании, поскольку методы расчетов достигли такого уровня развития, что начинают не просто объяснять экспериментальные результаты, но и предсказывать новые эффекты. Кроме того, в пользу существования описанного явления говорит недавно обнаруженный в электрохимических элементах с ферромагнитными электродами эффект перестраиваемого электрическим полем магнетизма.

Уважаемые физики — теоретики, результаты российского элементарного эксперимента, доказывающего, что обе пластины конденсатора заряжаются электронами, и его математического моделирования американскими учёными, совпадают. Отрицание этого факта, разрушающего Вашу теорию, эквивалентно борьбе с ветряной мельницей.

Таким образом, электроны, прошедшие через диод, приходят к нижней пластине конденсатора, сориентированными векторами спинов и магнитных моментов к её внутренней поверхности (рис. 5, а). В результате на этой поверхности формируется северный магнитный потенциал (N) .

Вполне естественно, что к внутренней поверхности верхней пластины конденсатора электроны придут из сети, сориентированными южными магнитными полюсами (S). Доказательством этого служит экспериментальный факт отклонения стрелки верхнего компаса 2 (К) вправо (рис. 5, а). Это означает, что электроны, движущиеся из сети к верхней пластине конденсатора, ориентированы южными магнитными полюсами (S) в сторону движения (рис. 6) .

Рис. 6. Схема движения электронов к пластинам диэлектрического конденсатора

Таким образом, ориентацию электронов на пластинах диэлектрического конденсатора обеспечивает проницаемость их магнитных полей через диэлектрик D (рис. 5). Потенциал на обоих пластинах конденсатора один — отрицательный и две магнитных полярности: северная, которой старая физическая теория приписывает знак минус, и южная, которой устаревшая физика приписывает знак полюс и предупреждает нас, что эта условность соответствует отсутствию электронов на этой пластине конденсатора.

На рис. 6 представлена схема, поясняющая ориентацию электронов, движущихся к пластинам конденсатора С. Электроны приходят к нижней пластине конденсатора, сориентированными северными магнитными полюсами (N) к её внутренней поверхности (рис. 6). К внутренней поверхности верхней пластины конденсатора приходят электроны, сориентированные южными магнитными полюсами (S).

Так электроны — единственные носители электричества в проводах формируют на пластинах конденсатора не разноимённую электрическую полярность, а разноимённую магнитную полярность. Нет на пластинах диэлектрического конденсатора протонов — носителей положительных зарядов .

3. Разрядка диэлектрического конденсатора

Процесс разрядки диэлектрического конденсатора на сопротивление — следующее экспериментальное доказательство соответствия реальности выявленной модели электрона (рис. 3) и ошибочности сложившихся представлений о том, что на пластинах диэлектрического конденсатора формируются разноимённые электрические заряды (рис. 7) .

Схема отклонения стрелок компасов (К) 1, 2, 3 и 4 при разрядке конденсатора на сопротивление R в момент включения выключателя 5 показана на рис. 7 .

Рис. 8. Схема движения электронов от пластин конденсатора к сопротивлению R

при разрядке диэлектрического конденсатора

Как видно (рис. 6 и 7), в момент включения процесса разрядки конденсатора, магнитная полярность на пластинах конденсатора изменяется на противоположную и электроны, развернувшись, начинают двигаться к сопротивлению R (рис. 7, 8).

Электроны, идущие от верхней пластины конденсатора ориентируются южными магнитными полюсами в сторону движения, а от нижней — северными (рис. 8). Компасы 3 и 4, установленные на совокупности проводов ВА, сориентированных с юга на север, чётко фиксируют этот факт, отклонением стрелок вправо, доказывая этим, что векторы спинов и магнитных моментов всех электронов в этих проводах направлены с юга на север (рис. 7, 8).

Уважаемые физики — теоретики, я изложил Вам мизерную часть электродинамики микромира, о которой у Вас нет элементарного представления. Пора опомниться и приступить к изучению электродинамики микромира, в которой детально описана физика следующих процессов и явлений , :

1. Выявлена модель фотона, формированием и поведением которой управляют 7 констант, и все параметры которой изменяются в интервале 15-ти порядков.

2. Выявлена модель электрона — носителя отрицательного электрического заряда, формированием и поведением которой управляют 23 константы.

3. Выявлена модель протона — носителя положительного электрического заряда, все параметры которого, определённые теоретически, совпадают с их экспериментальными значениями.

4. Детально описана физика следующих электродинамических процессов: движение электронов по проводам с постоянным и переменным напряжением, движение электронов через диод, зарядка и разрядка конденсатора, работа колебательного контура: конденсатор — индуктивность, формирование электрической искры в разрыве провода и её поведение в магнитных полях с разной полярностью, фотоэффект и эффект Комптона, работа радиолампы, передача и прием электронной информации, формирование реликтового излучения и нейтронных звёзд и многое другое , .

Жаль, конечно, что государство не имеет системы защиты молодёжи от навязывания ей учеными и педагогами ошибочных знаний, которые калечат молодёжный интеллектуальный потенциал.

1. Касьянов В.А. Физика. 10 класс. Дрофа. М. 2005.

2. Гуревич А.Е., Исаев Д.А., Понтак Л.С. Физика и химия. Учебник для 5-6 классов. «Дрофа». М. 2007. 192 с.

3. Канарёв Ф.М. Начала физхимии микромира. 12-е издание. Том I. Краснодар 2009. 687 с.

4. Канарёв Ф.М. Начала физхимии микромира. 12-е издание. Том II. Краснодар 2009. 448 с. https://kubagro.ru/science/prof.php?kanarev

5. Сухвал А.К. Два опыта с магнитным полем. Журнал «Химия и жизнь», № 3, 1988 г. с 27.

Именно по этой причине большинство приборов работает от сети, в которой ток переменный. Однако постоянный ток так-же применяется достаточно широко — во всех видах батарей, в химической промышленности и некоторых других областях.

Многие слышали такие загадочные слова, как одна фаза, три фазы, ноль, заземление или земля, и знают, что это важные понятия в мире электричества. Однако не все понимают, что они обозначают и какое отношение имеют к окружающей действительности. Тем не менее знать это обязательно.

Не углубляясь в технические подробности, которые не нужны домашнему мастеру, можно сказать, что трехфазная сеть — это такой способ передачи электрического тока, когда переменный ток течет по трем проводам, а по одному возвращается назад. Вышесказанное надо немного пояснить. Любая электрическая цепь состоит из двух проводов. По одному ток идет к потребителю (например, к чайнику), а по другому возвращается обратно. Если разомкнуть такую цепь, то ток идти не будет. Вот и все описание однофазной цепи (рис. 1.4).

Тот провод, по которому ток идет, называется фазовым, или просто фазой, а по которому возвращается — нолевым, или нолем. Трехфазная цепь состоит из трех фазовых проводов и одного обратного. Такое возможно потому, что

фаза переменного тока в каждом из трех проводов сдвинута по отношению к соседнему на 120 °С (рис. 1.5). Более подробно на этот вопрос поможет ответить учебник по электромеханике.

Представьте ток как поток воды, текущий по трубе. Через какой-то промежуток времени (например, 5 с) вода будет устремляться то в одну сторону, то в другую. С током это происходит намного быстрее — 50 раз в секунду (частота 50 Гц). В течение одного периода колебания величина тока повышается до максимума, затем проходит через ноль, а потом происходит обратный процесс, но уже с другим знаком. На вопрос, почему так происходит и зачем нужен такой ток, можно ответить, что получение и передача переменного тока намного проще, чем постоянного.

Получение и передача переменного тока тесно связаны с таким устройством, как трансформатор (рис. 1.2). Генератор, который вырабатывает переменный ток, по устройству гораздо проще, чем генератор постоянного тока. Кроме того, для передачи энергии на дальнее расстояние переменный ток подходит лучше всего. С его помощью при этом теряется меньше энергии.

Рис 1.2. Трансформатор на подстанции понижает напряжение от высоковольтной линии для передачи в бытовую сеть

При помощи трансформатора (специального устройства в видек атушек) переменный ток преобразуется с низкого напряжения на высокое и наоборот, как это представлено на иллюстрации (рис. 1.3).

Передача переменного тока происходит именно при помощи трехфазных сетей. Это выгодно экономически — не нужны еще два нолевых провода. Подходя к потребителю, ток разделяется на три фазы, и каждой из них дается по нолю. Так он попадает в квартиры и дома. Хотя иногда трехфазная сеть заводится прямо в дом. Как правило, речь идет о частном секторе, и такое положение дел имеет свои плюсы и минусы. Об этом будет рассказано позднее.

Земля, или, правильнее сказать, заземление — третий провод в однофазной сети. В сущности, рабочей нагрузки он не несет, а служит своего рода предохранителем.

Это можно объяснить на примере. В случае когда электричество выходит из-под контроля (например, короткое замыкание), возникает угроза пожара или удара током. Чтобы этого не произошло (то есть значение тока не должно превышать безопасный для человека и приборов уровень), вводится заземление. По этому проводу избыток электричества в буквальном смысле слова уходит в землю (рис. 1.6).

Еще один пример. Допустим, в работе электродвигателя стиральной машины возникла небольшая поломка и часть электрического тока попадает на внешнюю металлическую оболочку прибора. Если заземления нет, этот заряд так и будет блуждать по стиральной машине. Когда человек прикоснется к ней, он моментально станет самым удобным выходом для данной энергии, то есть получит удар током. При наличии провода заземления в этой ситуации излишний заряд стечет по нему, не причинив никому вреда. В дополнение можно сказать, что нолевой проводник также может быть заземлением и, в принципе, им и является, но только на электростанции.

Ситуация, когда в доме нет заземления, небезопасна. Как с ней справиться, не меняя всю проводку в доме, будет рассказано в дальнейшем.

Некоторые умельцы, полагаясь на начальные знания по электротехнике, устанавливают нолевой провод как заземляющий. Никогда так не делайте. При обрыве нолевого провода корпуса заземленных приборов окажутся под напряжением 220 В .

Виды токов: постоянные и переменные

В зависимости от изменения направления протекания заряженных частиц, различают следующие виды токов:

  • Постоянный – формируется движением заряженных частиц в одном направлении. Его основные характеристики (сила тока, напряжение) имеют постоянные значения и не изменяются во времени;
  • Переменный – направление перемещения зарядов при таком виде движения заряженных частиц периодически меняется. Количество изменений направления движения за единицу времени, равную одной секунде, называется частотой тока и измеряется в Герцах. Так, например, значение данной характеристики в обычной бытовой электрической цепи равно 50 Гц. Это означает, что в течение 1 секунды движущиеся по цепи электроны меняют свое направление 50 раз, вызывая тем самым такое же количество изменений напряжения в фазном проводе от 220 до 0 В.


Основные характеристики переменного тока

Урок 1. Электричество: куда бегут электроны

– В Европе теперь никто на пианино не играет,играют на электричестве.–На электричестве играть нельзя – током убьет.–А они в резиновых перчатках играют…–Э! В резиновых перчатках можно!«Мимино»

Странно… Играют на электричестве, а убивает почему-то каким-то там током… Откуда в электричестве ток? И что это за ток? Здравствуйте, уважаемые! Давайте разбираться.Ну, во-первых, начнём с того, почему это играть на электричестве в резиновых перчатках всё-таки можно, а, например, в железных или свинцовых – нельзя, хотя металлические прочнее? Дело все в том, что резина не проводит электричество, а железо и свинец – проводят, поэтому и током ударит. Стоп-стоп… Мы идем не в ту сторону, давайте, разворачиваемся… Ага… Начинать нужно с того, что все в нашей Вселенной состоит из мельчайших частичек – атомов. Эти частички настолько малы, что, например, человеческий волос по толщине в несколько миллионов раз превосходит размер самого маленького атома водорода. Атом состоит (см. рисунок 1.1) из двух основных частей – положительно заряженного ядра, состоящего в свою очередь из нейтронов и протонов и вращающихся по определенным орбитам вокруг ядра электронов.

Рисунок 1.1 – Строение электрона

Суммарный электрический заряд атома всегда (!) равен нулю, то есть атом электрически нейтрален. Электроны имеют довольно сильную связь с атомным ядром, однако, если приложить некоторую силу и «вырвать» один или несколько электронов из атома (посредством нагревания или трения, например), то атом превратиться в положительно заряженный ион, поскольку величина положительного заряда его ядра будет больше величины отрицательного суммарного заряда оставшихся электронов. И наоборот, – если каким-либо образом добавить к атому один или несколько электронов (но не посредством охлаждения…), то атом превратится в отрицательно заряженный ион.

Электроны, входящие в состав атомов любого элемента,абсолютно идентичны по своим характеристикам: заряду, размеру, массе.

Теперь, если посмотреть на внутренний состав любого элемента можно увидеть, что не весь объем элемента занимают атомы. Всегда, в любом материале так же присутствуют как отрицательно заряженные, так и положительно заряженные ионы, причем процесс преобразования «отрицательно заряженный ион–атом–положительно заряженный ион» происходит постоянно. В процессе этого преобразования образуются так называемые свободные электроны – электроны, не связанные ни с одним из атомов или ионом. Оказывается, что различных веществ количество этих свободных электронов разное.

Так же из курса физики известно, что вокруг любого заряженного тела (даже такого ничтожно малого, как электрон) существует так называемое невидимое электрическое поле, основными характеристиками которого являются напряженность и направление. Условно принято, что поле всегда направлено из точки положительного заряда к точке отрицательного заряда. Такое поле возникает, например, при натирании эбонитовой или стеклянной палочки о шерсть, при этом в процессе можно услышать характерный треск, явление которого мы рассмотрим позже. Причем, на стеклянной палочке будет образовываться положительный заряд, а на эбонитовой – отрицательный. Это как раз и будет означать переход свободных электронов одного вещества в другое (со стеклянной палочки в шерсть и из шерсти в эбонитовую палочку). Переход электронов означает изменение заряда. Для оценки этого явления существует специальная физическая величина – количество электричества, названная кулон, причем 1Кл= 6.24•1018 электронов. Исходя из этого соотношения заряд одного электрона (или его по-другому называют элементарным электрическим зарядом) равен:Так при чем же здесь все эти электроны и атомы… А вот при чём. Если взять материал с большим содержанием свободных электронов и поместить его в электрическое поле, то все свободные электроны будут двигаться в направлении положительной точки поля, а ионы – поскольку они имеют сильные межатомные (межионные) связи –оставаться внутри материала, хотя по идее они должны двигаться к той точке поля, заряд которой противоположен заряду иона. Это было доказано с помощью простого эксперимента.

Два различных материала (серебро и золото) соединили друг с другом и поместили в электрическое поле на несколько месяцев. Если бы наблюдалось движение ионов между материалами, то в месте контакта должен был бы произойти процесс диффузии и в узкой зоне серебра образоваться золото, а в узкой зоне золота – серебро, но такого не произошло, что и доказало неподвижность «тяжелых» ионов. На рисунке 2.1 показано движение положительной и отрицательной частиц в электрическом поле: отрицательно заряженные электроны движутся против направления поля, а положительно заряженные частицы – по направлению поля. Однако это справедливо только для частиц, не входящих в кристаллическую решетку какого-либо материала и не связанных между собой межатомными связями.

Рисунок 1.2 – Движение точечного заряда в электрическом поле

Движение происходит именно таким образом, потому как одноимённые заряды отталкиваются, а разноимённые – притягиваются: на частицу всегда действуют две силы: сила притяжения и сила отталкивания.

Так вот, именно упорядоченное движение заряженных частиц и называют электрическим током. Существует забавный факт: изначально считалось (до открытия электрона), что электрический ток порождён именно положительными частицами, поэтому направление тока соответствовало движению положительных частиц от «плюса» к «минусу», однако впоследствии обнаружилось обратное, но направление тока решено было оставить прежним, и в современной электротехнике осталась эта традиция. Так что всё на самом деле наоборот!

Рисунок 1.3 – Строение атома

Электрическое поле можно, хоть и характеризуется величиной напряженности, но создается вокруг любого заряженного тела. Например, если всё ту же стеклянную и эбонитовую палочки натереть о шерсть, то вокруг них возникнет электрическое поле. Электрическое поле существует около любого объекта и воздействует на другие объекты, сколь угодно далеко они бы ни располагались.Однако с ростом расстояния между ними напряженность поля уменьшается и её величиной можно пренебречь, так что два человека, стоящие рядом и имеющие некоторый заряд, хоть и создают электрическое поле, и между ними протекает электрический ток, но он настолько мал, что его величину трудно зафиксировать даже специальными приборами.

Так вот, пора бы уже побольше рассказать о том, что это за характеристика – напряженность электрического поля. Начинается всё с того, что в 1785 году французский военный инженер Шарль Огюстен де Кулон, отвлекшись от рисования военных карт, вывел закон, описывающий взаимодействие двух точечных зарядов:

Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними.

Мы не будем углубляться в то, почему это именно так, просто поверим на слово господину Кулону и введём некоторые условия для соблюдения этого закона:

  • точечность зарядов — то есть расстояние между заряженными телами много больше их размеров — впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными не пересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;
  • их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд;
  • взаимодействие в вакууме.

Математически закон записывается следующим образом:где q1,q2 – величины взаимодействующих точечных зарядов,r – расстояние между этими зарядами,k – некоторый коэффициент, описывающий влияние среды.На рисунке ниже приведено графическое пояснение закона Кулона.

Рисунок 1.4 – Взаимодействие точечных зарядов. Закон Кулона

Таким образом, сила взаимодействия между двумя точечными зарядами возрастает при увеличении этих зарядов и уменьшается при увеличении расстояния между зарядами, причём увеличение расстояния в два раза приводит к уменьшению силы в четыре раза. Однако подобная сила возникает не только между двумя зарядами, но и между зарядом и полем (и опять электрический ток!). Логично было бы предположить, что на различные заряды одно и то же поле оказывает различное влияние. Так вот отношение силы взаимодействия поля и заряда к величине этого заряда и называется напряжённостью электрического поля. При условии, что заряд и поле неподвижны и не изменяют своих характеристик с течением времени.где F – сила взаимодействия,q – заряд.Причём, как говорилось ранее, поле имеет направление, и это возникает именно исходя из того, что сила взаимодействия имеет направление (является векторной величиной: одноимённые заряды притягиваются, разноимённые – отталкиваются).После того, как я написал этот урок, я попросил моего друга прочитать его, оценить, так скажем. Кроме того, я задал ему один интересный на мой взгляд вопрос как раз по теме этого материала. Каково же было моё удивление, когда он ответил неверно. Попробуйте и Вы ответить на этот вопрос (он помещен в раздел задач в конце урока) и аргументировать свою точку зрения в комментариях.И последнее: поскольку поле может переместить заряд из одной точки пространства в другую, оно обладает энергией, а, следовательно, может совершать работу. Этот факт пригодится нам в дальнейшем при рассмотрении вопросов работы электрического тока.На этом первый урок окончен, но у нас так и остался без ответа вопрос, почему же, в резиновых перчатках током не убьет. Оставим его как интригу на следующий урок. Спасибо за внимание, до новых встреч!

  • Наличие свободных электронов в веществе является условием для возникновения электрического тока.
  • Для возникновения электрического тока необходимо электрическое поле, которое существует только вокруг тел, обладающих зарядом.
  • Направление протекания электрического тока обратно направлению движения свободных электронов – ток течёт от «плюса» к «минусу», а электроны наоборот – от «минуса» к «плюсу».
  • Заряд электрона равен 1.602•10-19 Кл
  • Закон Кулона: модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними.
  • Предположим, что в городе-герое Москве имеется некая розетка, самая такая обычная розетка, которые есть и у Вас дома. Так же предположим, что мы протянули провода из Москвы во Владивосток и подключили во Владивостоке лампочку (опять же, лампа совершенно обычная, такая же освещает сейчас комнату и мне, и Вам). Итого, что мы имеем: лампочка, присоединенная к концам двух проводов во Владивостоке и розетку в Москве. Теперь вставим «московские» провода в розетку. Если мы не будем учитывать массу всяких условий и просто предположим, что лампочка во Владивостоке загорелась, то попробуйте предположить, доберутся ли электроны, которые в данный момент находятся в розетке в Москве в нить накала лампочки во Владивостоке? Что случится, если мы подключим лампочку не к розетке, а к аккумулятору?

← Введение | Содержание | Урок 2: Как пересчитать электроны →

Двунаправленное перемещение зарядов

Наряду с упорядоченным движением носителей зарядов (электронов), в проводниках наблюдается также незначительный обратный процесс – условное перемещение положительных зарядов, потерявших отрицательные частицы атомов. Вместе с основным током данное явление получило название двунаправленное перемещение зарядов. Особенно оно ярко проявляется при протекании электричества через электролиты (явление электролиза).


Двунаправленное перемещение зарядов в аккумуляторной батарее

-Ток идёт от минуса к плюсу или от плюса к минусу

Как кому удобно думать!

a ko sporil ob etom voobshe iz nechego poluchaetsa tolko nichego potomu i ot minusa nichego ne mojet poiti k pliusu

Формально принято считать положительным направление тока от плюса к минусу. Это было введено ДО того, как стала понятна природа электрического тока. Так вела бы себя положительно заряженная частица. Но оказалось, что наиболее распространённый в практических применениях носитель тока движется в другом направлении. И его заряд считается «отрицательным». Если вопрос в том, куда движутся частицы-носители тока — это зависит от природы носителей. Электроны идут от минуса к плюсу. Но носителями могут быть, к примеру, положительные ионы в электролитах. Они будут двигаться от плюса к минусу. >^.^<

До сих пор спорят…

Если вопрос стоит о минусе и плюсе, это значит что мы имеем дело с постоянным источнико тока. А таковым является аккумулятор или обычная батарея и ей подобное. Так вот внутри батарее ток идет от минуса к плюсу, а снаружи, если подключить какой-нибудь потребитель, от плюса к минусу. Вроде всё давно ясно и спору никакого нет уже давно.

Это чисто условность. В отчественной литературе, как учебной, так и прикладной, ПРИНЯТО СЧИТАТЬ, что ток идёт от плюса к минусу. В американских учебниках (ну и книжкаж тож) ПРИНЯТО СЧИТАТЬ, что ток идёт от минуса к плюсу, что ближе к реальному направлению движения носителей заряда в проводниках, если не заморачиваться экзотикой типа электролитов. В реальной жизни важно не то, какое направление принято за правильное, а СВЯЗЬ между направлением тока и, скажем, направлением магнитного поля, этим током порождаемого. Так что весь трюк в том, чтоб быть последовательными «насквозь» — то есть чтоб во всех материалах, издаваемых на выбранном языке, направление тока считалось одним и тем же, а в голове у разработчика конкретного устройства не было путаницы.

Электрический ток – процесс перенос зарядов между точками с разными потенциалом. Если один электрод заряжен отрицательно, то на нем избыток электронов, со стороны положительного потенциала расположены ионы. В одной среде активно перемещаются электроны навстречу положительному электроду, в другой среде перетекают ионы. Распространение заряда и распространение частиц – это разные понятия, поэтому есть условность и недоговоренность. А что Вы хотите? Чтобы пришел Нургалиев и сказал заряды движутся только в ту сторону, что я сказал? Законы природы очередной указ отменить не может. Направление тока можно принять произвольным, а направление перемещения заряженных частиц зависит от природы проводника. Вот и все. )))

на минусе — избыток эллектронов, на плюсе — недостаток, из минуса эллектроны перелетают к плюсу, а вот про ток — смотря что называть током.

решен, и решен для каждого типа проводника отдельно, потому что носители разные в разных проводниках. в обычном проводе, ток-электроны идут от минусв к плюсу, в это время еще там нектрые атомы могут оказаться лишенными электронов, и они начнут дрифовать к минусу, так что можно сказать что идет в обои стороны, но приимущественно, в обычном проводе, носители заряда электроны, по этому можно сказать что идет от минуса к плюсу. Правдо тянет их к себе плюс, что будет означать что первый электрон начнет двигаться тот, который нахходится ближе к плюсу, а потом второй, и так далее, это будет называться что ток течет от минуса к плюсу, а напряжение действует от плюса к минусу.

Значение перемещения электронов в электрической схеме

Понимание того, как идет в цепи ток, необходимо при составлении такого графического изображения расположения электронных деталей, как схема. Важно понимать, откуда течет ток, для того чтобы правильно располагать на схеме, затем соединять различные радиоэлектронные элементы. Если для таких радиодеталей, как конденсатор, резистор, полярность подключения не имеет значения, то полупроводниковый транзистор,

диод необходимо размещать на схеме и затем запитывать, учитывая направление движения тока, иначе они и собираемое с их использованием устройство, электронный блок не будут правильно функционировать.

Таким образом, знание физической сущности направления течения заряженных частиц в проводнике, электролите, полупроводнике позволит любому человеку не только расширить свой кругозор, но и применять его на практике при монтаже электропроводки, пайке различных электронных блоков и схем. Также подобная информация поможет разобраться в том, почему произошла поломка того или иного электроприбора, как ее устранить и предотвратить в будущем.

УПРАЖНЕНИЕ НА АЛЬТЕРНАТИВУ

Выбрать между двумя альтернативами трудно, поэтому стоит перенести внутренний процесс метания на бумагу, проговорить его и зафиксировать. Эта техника – одна из самых популярных и известных, поэтому мы нередко ей пренебрегаем. Имеет смысл всегда начинать с нее, поскольку она отлично «экономит» ваши нервы, время и сон. Она отлично работает как в случае выбора марки холодильника, так и в случае выбора будущей профессии. Единственное ограничение техники – альтернатив должно быть не больше двух. Три и более вариантов уже очень трудно удерживать в поле внимания.

Вам понадобится:

лист бумаги, ручка и немного времени.

Инструкция

Расчертите лист пополам, наверху каждой половины напишите название альтернатив, между которыми вы выбираете. Каждую половину разделите еще раз пополам и выпишите в образовавшихся колонках плюсы и минусы каждого выбора. Пишите все, что приходит в голову. Дайте получившемуся списку немного «отвисеться» – вернитесь к нему через некоторое время и обведите (подчеркните, выделите маркером) те плюсы и минусы гипотетически принятых решений, которые имеют ключевое значение в вашей жизни. Все остальное отбросьте. Взвесьте их, примерьте на себя и используйте в качестве основания для окончательного выбора. Эта техника как минимум поможет справиться с тревогой и страхом совершить необдуманный выбор, как максимум – позволит точно определиться в том, какие ценности и смыслы стоят за каждым из вариантов, и найти свой собственный путь.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *