Как подключить УЗО правильно: инструкция на 7 схем с фото
В своей практике я не раз сталкивался с тем, что дорогая защита, на установку которой затрачено много сил и средств, не срабатывала при аварийной ситуации. Это приводило к очень серьезным повреждениям оборудования.
Для таких случаев энергетики страхуются резервными устройствами, сразу планируя их действие проектом. В домашней проводке так не поступают: слишком дорого.
Поэтому надо хорошо представлять, как подключить УЗО правильно в действующую схему, что я и рассматриваю ниже для типовых случаев безопасного питания электричеством оборудования квартиры либо дома.
Назначение и принцип работы УЗО в картинках
Устройство защитного отключения относится к токовым защитам и занимает второе место за автоматическим выключателем по обеспечению безопасности. Оно уже спасло здоровье многим людям, предотвратило электрические травмы.
Необходимость использования УЗО подтверждена требованиями времени, диктуется правилами электрической безопасности.
Как работает защитное отключение при образовании тока утечки
Орган сравнения фаз контролирует величину векторов входящего и выходящего токов по проводникам потенциалов фазы и нуля, постоянно сравнения их магнитные потоки.
Если величина второго вектора уменьшилась больше допустимого значения уставки, то делается вывод о возникновении неисправности. От появившегося тока утечки автоматически отключаются силовые контакты.
Дополнительное назначение устройства: предотвращение пожара здания вследствие нарушения диэлектрических свойств изоляции, создающего случайные пути аварийных токов.
Дифференциальный орган работает во всех системах заземления здания. Однако наиболее корректная и безопасная ситуация создается в схемах TN-S и TN-C-S, ТТ с дополнительной заземляющей магистралью РЕ.
Здания со старой системой заземления TN-C загрубляют чувствительность органа сравнения.
Электрические схемы УЗО: 2 варианта для квартиры и дома
Защита выпускается готовыми модулями для установки на Din рейку с возможностью монтажа в однофазной или трехфазной проводке.
Схема подключения однофазного УЗО
В сеть 220 вольт включают модуль на две магистрали тока с потенциалами фазы и нуля.
Схема внутренней конструкции защиты печатается прямо на корпусе, приводится в документации. Провод приходящей фазы подключается сверху на клемму №1, а с клеммы №2 идет к потребителям.
Потенциал нуля подводится на верхнюю клемму N, а снимается с нижней. Менять эти правила подключения нельзя: иначе орган сравнения фаз не сможет работать правильно, произойдут ложные срабатывания.
Схема подключения трехфазного УЗО
Три входных фазных проводника монтируют поочередно к верхним клеммам №1, 2 и 3. Снизу модуля с клемм №2, 4 и 6 их снимают и направляют к потребителю. Потенциал нуля подводят сверху к клемме “N”, снимают с нижней.
Различные производители конструктивно располагают магистраль рабочего нуля справа или слева от магистралей фаз. Все эти вариации показаны схемой-картинкой на корпусе защиты.
Магистрали фаз допустимо менять между собой местами, но их нельзя путать с линией тока нуля. К ней подключена обмотка кнопки проверки “Тест”. При ее нажатии защита станет работать не правильно.
Схемы подключения однофазного УЗО: 3 варианта использования в квартире
Модуль защиты в квартирном щитке может монтироваться на:
- вводе для контроля всего рабочего оборудования, подключенного к проводке;
- одной проблемной линии, например, для ванной комнаты или кухни, обладающих повышенной степенью влажности;
- несколько магистралей с розеточными группами.
Вводное УЗО: защита всей проводки в квартирном щитке
Устройство защитного отключения на вводе в квартиру устанавливают непосредственно за счетчиком и вводным автоматическим выключателем.
Пример расположения модулей защит, показанных на фотографии электрического щитка, дополняет поясняющая схема. Для ее ввода используется обычный автоматический выключатель однофазного исполнения.
Он разрывает только потенциал фазы аварийного тока. Это вполне приемлемо для обеспечения большинства задач, которые стоят в вопросах безопасности бытовой проводки.
Схема с двухполюсным автоматом ввода создается по такому же принципу за исключением того, что потенциал нуля проходит через его вторую магистраль на вход вводного УЗО.
После выхода с устройства защитного отключения потенциал нуля подключают к отдельной изолированной шинке N. С нее выполняют разводку по жилам кабелей к потребителям.
Защитные магистрали РЕ проводника монтируются с помощью собственной шинки PE. На нее подключается соответствующая жила от вводного кабеля и собираются отходящие магистрали ко всем потребителям без каких-либо разрывов.
Технические характеристики УЗО: номинальный ток и величина утечки — как правильно выбрать для вводного модуля
2 перечисленных параметра заложены заводом в конструкцию любого модуля. Изменить их после его приобретения мы не сможем. Поэтому важно их правильно выбирать до покупки.
Номинальный ток и уставка срабатывания утечки маркируются прямо на корпусе защиты.
Как выбрать УЗО по номинальному току
Эта величина характеризует силу тока, которую способны нормально выдерживать внутренние цепи блока без повреждения, например, со значением 40 ампер, как показано на картинке.
Если через внутреннюю схему защиты пойдет больший ток, то он просто спалит обмотки, провода, изоляцию. Это допускать нельзя.
Каждое устройство защитного отключения подключают через индивидуальный автомат с меньшим номинальным током на одну ступень стандартного ряда.
По этому принципу для верхней схемы выбран автомат с током 32 А для вводного УЗО на 40 ампер. Его уставка по нагрузке короткого замыкания и перегрузу спасает наш модуль от выгорания при любой аварии.
Стоимость дифавтомата несколько выше, чем составляющих УЗО и автомата вместе, но его применение экономит место в квартирном щитке, что часто бывает вполне обоснованно.
Как выбрать УЗО по току утечки
Практически через любой слой изоляции протекают токи. Просто у материалов с высокими диэлектрическими свойствами они очень малы из-за высокого электрического сопротивления.
Поврежденная изоляция обладает низкой ограничивающей способностью. Через нее протекают токи повышенной величины.
ПУЭ регламентирует суммарный ток утечки (дифференциальный) сквозь изоляцию. Он никогда не должен превышать безопасную для человека величину.
Существуют специальные лабораторные приборы, которые позволяют измерить ток утечки через изоляцию электропроводки. Когда они отсутствуют, то выполняют приблизительный расчет по предложенной методике.
Для обычных помещений выбирают устройство защитного отключения с безопасным дифференциальным током 30 мА. Во влажной среде, характерной для ванной комнаты или кухни во время приготовления пищи, его величина снижается до 10 или 6 мА.
На вводе в здание допустимо ставить устройство защитного отключения с номиналом 100 мА.
Вводное УЗО на 100, 300 или 500 мА не способно спасти человека от получения электрической травмы. Его задача: предотвратить пожар из-за возгорания электрической проводки.
УЗО для ванной: пример выбора модуля защиты на один потребитель
Вариант размещения защитного отключения внутри квартирного щитка показан фотографией ниже.
Схема подключения модуля защиты для одной отдельной линии (ванная комната) с расположением магистралей фазы и нуля показана более подробно на общей картинке для квартирной проводки.
Автоматический выключатель этой магистрали, как и остальных, запитан от сборки за вводным автоматом.
Обращаю внимание, как здесь подключена шинка рабочего нуля и ее отличия от способа, выбранного для схемы с вводным модулем.
Рабочий ноль подводится от вводного кабеля непосредственно к счетчику, а с него отводится на шинку N. С нее выполняется разводка ко всем потребителям кабелями отходящих линий.
К розеткам ванной комнаты рабочий ноль подается через отдельный силовой контакт нашей защиты.
Монтаж шинки PE выполняется по предыдущему варианту без изменений.
В этой схеме внутренняя конструкция модуля защищена от превышения номинального тока (16 ампер) собственным автоматическим выключателем (номинал 10 А).
Групповое УЗО: экономная защита нескольких отходящих линий
Устанавливать индивидуальный модуль к каждому отдельному потребителю — наиболее оправданное решение в вопросах обеспечения безопасности и поиска места возникшей неисправности.
Однако такая схема монтажа самая затратная и дорогая. Она требует использования довольно вместительного квартирного щитка и большого количества модулей УЗО или дифференциальных автоматов. На их покупку уходит много денег.
Групповое УЗО позволяет их экономить. Его просто подключают к нескольким отходящим линиям, располагая отдельным блоком перед индивидуальными автоматическими выключателями.
Внутри квартирного щитка их удобно монтировать отдельными группами. Этот прием обеспечивает наглядность при эксплуатации и ремонте.
Схема подключения группового УЗО к нескольким отходящим линиям изображена ниже.
Здесь защиту группового модуля по величине номинального тока 50 ампер выполняет автомат ввода 40А.
У подобной схемы начинающие электрики выполняют ошибочный расчет, подбирая номинальный ток группового УЗО как сумму номиналов подключенных нагрузок.
Например, на схеме все потребители запитаны через автоматы на 32, 25 и 16 ампер. Общая их сумма составляет 32+25+16=73. Искать защиту с таким номиналом или большим бессмысленно.
Этот вопрос решается проще: вводной автомат в этой квартирной проводке уже выбран на 40 ампер. Большие токи он обязан отключать, одновременно защищая групповое УЗО.
Поэтому его номинал вполне достаточно выбрать на одну ступень больше из стандартного токового ряда: 50 ампер.
Отличия конфигурации цепей рабочего нуля для схемы группового УЗО
Рассматриваемая схема объединила оба рассмотренных выше варианта формирования цепочек для подключения к шинке N:
- до группового УЗО работает вторая разработка,
используемая для одиночной линии; - после него создается своя дополнительная шинка
N1, отделяемая от общей цепочки контактами группового модуля.
Монтаж шинки РЕ и проводов к ней не меняется.
Схема подключения трехфазного УЗО: 4 варианта для частного дома
Ниже рассматриваю случаи использования противопожарного и обычного модуля в разных ситуациях.
Противопожарное УЗО для частного дома: как правильно выбрать и установить
Фрагмент схемы подключения четырехполюсного противопожарного УЗО на вводе в частный дом поясняет главный принцип его выбора по дифференциальному току.
Его ставят на вводе в здание для защиты:
- входного кабеля;
- линий к потребителям, на которых не используются
индивидуальные устройства защитного отключения; - выполняющей роль резерва в случае отказа
основного модуля.
Противопожарное УЗО подключают в схему электропитания дома с обязательным соблюдением селективности его срабатывания. Она достигается комплексно двумя настройками:
- троекратным запасом уставки по дифференциальному
току в сравнении с любым групповым или индивидуальным модулем, расположенным
ниже; - замедлением на срабатывание по времени минимум в
3 раза.
Фрагмент приведенной выше схемы включения показывает, что дифференциальный ток противопожарного модуля IΔns трижды превышает уставку утечки IΔn1 или IΔn2 у любой группы потребителей.
Противопожарные УЗО создаются для срабатывания от токов утечки на 100, 300 либо 500 мА, а модули защиты человека от дифференциального тока производятся на уставки 30, 10 или 6 миллиампер.
Возможность выставления уставки времени для селективного срабатывания обозначается на корпусе модуля латинской буквой “S”.
Подключение трехфазного УЗО: схема на 4 полюса с использованием нейтрали
Упрощенно схему подключения четырехполюсного УЗО в трехфазную сеть можно представить следующим образом: на выходе рабочего нуля используется шинка для разводки потенциалов нейтрали N по подключенным потребителям (схема с нейтралью).
Потребители могут питаться от всех 3 фаз или какой-то одной. Эта же схема позволяет выполнять защиту одновременно трех разных однофазных цепей при условии использования общей нейтрали.
При этом стараются построить работу оборудования с соблюдением равномерного распределения токов нагрузок по всем фазам.
Подключение трехфазного УЗО: схема на 4 полюса без использования нейтрали
Отказаться от работы нейтрального провода и упростить конструкцию позволяет случай использования симметричной нагрузки, у которой все токи в фазах всегда равны.
Пример такого подключения — защита трехфазного асинхронного электродвигателя. Обмотки его статора могут быть собраны по схеме звезды или треугольника, которые обеспечивают одинаковые сопротивления между фазами.
Потенциал рабочего нуля заводится на вводной контакт четырехполюсного УЗО, а на выходной ничего не подключается. Выходная клемма потенциала N остается пустой.
Этот прием позволяет экономить средства за счет подключения двигателя к цепям питания кабелем с четырьмя, а не пятью жилами: три для фазных потенциалов и одна — защитного РЕ проводника.
Его монтируют на специальный болт заземления корпуса.
Подключение трехфазного УЗО: схема для однофазной сети
Предлагаемый вариант не является типичным.
Он используется как исключение в трех случаях:
- У владельца имеется лишний модуль защиты, который необходимо пристроить в работу. Иначе оно просто пылится без дела.
- Собираемую однофазную проводку планируется в ближайшем времени переводить на три фазы.
- Временная замена модуля, вышедшего из строя при возникновении аварии.
Во всех трех случаях необходимо потенциал фазы пускать через те клеммы, к которым подключена обмотка кнопки “Тест”. Иначе она не станет срабатывать при ручных проверках.
В этой короткой статье я постарался дать самый необходимый материал. Видеоролик владельца Заметки электрика наглядно дополняет, как подключить УЗО правильно и выбрать его по номинальному току и току утечки. Рекомендую посмотреть.
Ожидаю, что у вас еще возникли вопросы по этой теме. Задавайте в комментариях. Я отвечу.
Точный расчёт и схема подключения УЗО, полное руководство
— Как правильно рассчитать и подключить УЗО
— Расчёт тока утечки, выбор номиналов
— Примеры
12 декабря 2022
УЗО — наиболее сложный для понимания элемент домашнего электрощита, в этой статье мы на примерах покажем, как как любой новичок сможет грамотно рассчитать и подключить УЗО. Мы не будем вас грузить электротехникой, углубляться в чрезмерную науку и препарировать устройство под микроскопом, а разберёмся в самом практичном.
Вы узнаете о главных параметрах и принципе работы защиты, научитесь проводить расчёт УЗО на группу автоматов и напрямую для потребителя, чтобы реализовать самую жизненно важную функцию УЗО — защиту человека от поражения электрическим током, как организовать эту защиту, как правильно рассчитать УЗО и как его правильно сочетать с автоматическими выключателями.
Никаких особых знаний от вас не потребуется, то что вы читаете этот материал уже говорит о том, что у вас достаточно знаний чтобы разобраться в самом главном и понять, как выбрать УЗО правильно.
Сразу определим, что вопроса ставить или не ставить УЗО сегодня просто нет — определённо ставить и не одно. Это понятно, идём дальше.
Принцип действия вкратце, если кто-то совсем не знает
Специальный механизм в УЗО сравнивает ток по схеме “пришло-ушло”. Вот несколько пояснений, что именно сравнивает и как, потому что это очень важно понять:
- это НЕ сравнение того, столько пришло на клеммы IN УЗО и вышло с клемм OUT
- это сравнение сколько ушло к потребителям и сколько вернулось обратно
Что такое “пришло-ушло-вернулось”
Есть два питающих проводника, которые часто называют плюсом и минусом, фазой и нулём. При подключении потребителя потенциал переносится от одного проводника к другому, проходя через потребитель, тем самым питая его. Можно измерить сколько пришло в потребитель и сколько ушло — это разница токов двух проводников. Вот как раз эту разницу и измеряет специальный чувствительный механизм УЗО.
Поэтому можно сказать так: механизм в реальном времени измеряет сколько электричества прошло “до” или “от” потребителей по фазному проводнику и сколько по нулевому.
Ну и чтобы быть совсем точным, то УЗО измеряет разницу не только по конечному потребителю, а сколько вообще прошло электричества по проводам сразу после выхода из УЗО, ведь пока электричество дойдёт до потребителя, оно проделает извилистый путь по проводам, соединениям, распаячным коробкам, клеммам, гильзам, розеткам и т.д. В любом месте пути может образоваться утечка, которую УЗО зарегистрирует.
Так что мы считаем зоной зответственности УЗО всё, что находится сразу после выходных клемм этого самого авто выключателя дифференциального тока. Это, кстати, ещё одно из названий УЗО — коротко АВДТ.
Следующий важный момент: УЗО никак не реагирует на перегрузку и короткое замыкание, в этих случаях оно работает пока не выйдет из строя — сгорит, расплавиться, что угодно. Главное тут — УЗО не защитит от сверхтока, не в этом его задача.
Поэтому в электрощите УЗО всегда сочетается с автоматическими выключателями, вот последние как раз и нужны для отключения линии при перегрузке или коротком замыкании. На перегрузке мы ещё остановимся далее подробнее, это важно.
И вот оно, самое главное — дифференциальный ток
Это разница между тем, что прошло по одному выводу устройства и по другому. Если эта разница есть, а её величина уже в диапазоне отключения, то УЗО разомкнёт цепь. Уставка УЗО, т.е. ток реагирования, он же номинальный дифференциальный ток, определяет величину утечки, при которой произойдёт отключение.
Утечка в 30 мА — это верхний предел УЗО для того, чтобы защитить человека.
Когда утечка есть, а отключения нет
Есть такой параметр “неотключающий дифференциальный ток” и равен он половине тока уставки, т.е. при токе до 0.5 от уставки УЗО не отключает линию, а будет срабатывать в диапазоне от 0.5 и до номинального отключающего.
Утечка в сети есть всегда
Она складывается из утечек в нагрузке (подключённый прибор) и утечек проводки. В любой сети есть естественные фоновые токи утечки и утечка, прямо пропорциональная нагрузке, регистрируемые механизмом УЗО, поэтому кроме выбранной уставки нам нужно учитывать максимальную мощность нагрузки защищаемой линии.
Суммарная утечка сети = фоновая утечка + утечка нагрузки
Обратите внимание, что для того, чтобы УЗО сработало, совсем необязательно, чтобы в сеть что-то было включено. Даже при отсутствии нагрузки УЗО начеку и готово сработать при появлении разницы на контактах.
Сценариев срабатывания может быть много
Самый очевидный — это когда каким-то образом фаза попала на токопроводящий корпус бытового прибора, включённого в сеть. Опять же, статья не научная, и мы не будем вдаваться в детали разницы потенциалов (когда она есть, когда нет, что там с заземлением корпусов и т.д.) и прочей электротехнической науки. Достаточно понимать, что прикосновение к таким предметам может в разных случаях оказаться либо едва заметным, а может быстро вырасти от пощипывания до настоящего удара, вплоть до летального исхода.
Кроме этого проводка может получить повреждения в любом месте. Со временем ли, или одномоментно, но ток может начать утекать туда, куда не должен. И вот для всех таких случаев и создано УЗО, которое в реальном времени измеряет эту утечку и реагирует в тот момент, когда пора отключать линию (момент задаётся уставкой, как вы знаете). Механизм делает это очень быстро.
Расчёт номиналов УЗО
Как уже упоминалось, номинал по диф. току в 30 мА — это максимальное значение уставки для защиты человека от поражения током, всё, что выше, не защищает человека. Во влажных помещениях или для “влажных” приборов (тех, что работают во влажной среде или совсем рядом) нужно ставить УЗО с уставкой ещё меньшей — 10 мА, правда и линия должна быть отдельной, не совмещённой ни с какими другими устройствами. Дальше поймете почему.
Итак, формулы! Начинаем считать, например, у нас есть стиральная машина, её максимальная мощность по документам 2000 Вт. Мы хотели бы подключить стиралку к УЗО на 10 мА, т.к. она будет находится в ванной комнате, а это зона повышенной влажности, а значит опасности. Поэтому мы хотим поставить УЗО повышенной чувствительности.
Нам нужно посчитать суммарный ток утечки всей линии. Для этого надо суммировать ток утечки электроприёмника (да, так называются наши стиралки, кондиционеры, плиты, холодильники и всё, что подключено к сети) и утечку самой сети.
Делается это так:
на 1 А тока нагрузки потребителя будет 0,4 мА утечки, а ток утечки сети — 10 мкА на 1 м длины фазного провода.
Давайте посчитаем на примере стиральной машины:
Сила тока при максимальной паспортной мощности: 2000 Вт / 220 В = 9.09 А
Утечка самой машинки: 9.09 А x 0.4 мА = 3.636 мА
Предположим, что длина проводки от щитка до стиралки 10 метров
Утечка линии:
10 м * 0.010 мА (это 10 мкА) = 0.1 мА
Суммируем: 3.636 мА + 0.1 мА = 3.736 мА
Итоговая суммарная утечка получена — 3.736 мА, а как это соотнести с УЗО?
Правила гласят, что номинальный ток утечки (ток срабатывания) УЗО должен быть в 3 раза больше суммарной утечки защищаемой линии. У нас получается, что 3.736 мА * 3 = 11.20 мА
Получается, что согласно правил, наша желаемая уставка в 10 мА не проходит проверку и надо брать следующую ступень — 30 мА. Строго формально расчётное значение не проходит, но это может быть так только на первый взгляд. Вся формула очень чувствительна к мощности прибора. Наши 2000 Вт — это максимальная мощность, на которой устройство может и не будет работать, в конце концов это зависит от того, в каком режиме использовать устройство. Подставьте в формулу мощность в 1800 Вт и она практически проходит проверку.
Рассчитывая проводку, стоит представлять реальные условия эксплуатации. Чтобы лучше понимать максимальную мощность, которую вы принимаете для своих расчётов, нужно понимать из чего она складывается внутри устройств. Конкретно в стиральной машине основные потребители это: электродвигатель барабана и нагревательный элемент. От разных режимов работы зависит и потребляемая мощность.
Споры про 10 мА
Насчёт необходимости 10 мА многие спорят, есть правила, регламенты, опыт мастеров, однако, есть просто базовая математика и логика — если результаты расчётов позволяют использовать УЗО со значением тока утечки 10 мА, то надо ставить.
Бывает очень старая проводка, где естественные токи утечки такие, что УЗО на 10 мА будет постоянно срабатывать и докучать жильцам. Это ещё называют ложными срабатываниями, хотя тут нет лжи, это принцип действия УЗО, просто в быту такие срабатывания вызывают неудобство и человек называет отключения ложными. В итоге в рекомендации использовать номинал 10 мА мы исходим из того, что у нас будет новая качественно сделанная проводка и на заданной линии не висит ничего постороннего, кроме целевых потребителей — объектов расчётов.
Расчёт утечки для групповых УЗО
Это был простой пример с одним потребителем, но на практике вы захотите защитить все устройства от утечек максимально, кроме одиночных у вас будут и групповые линии, совмещающие несколько розеток и даже нескольких помещений. Они будут подключены к отдельным автоматам и в этом случае для распределения всей нагрузки по групповым УЗО нужно будет просчитывать пределы этих групп по нагрузке, проходящих проверку трёхкратной утечки. В этом и есть грамотный инжиниринг электрощита.
Вот так было бы идеально — защитить каждую отходящую линию отдельным УЗО + автомат. Но это будет очень дорого по деньгам, займёт много места в электрощите и к тому же это избыточно чисто по расчёту утечки всех линий.
А вот так будет лучше:
Грамотно, экономно, компактно, но потребует расчётов, чтобы распределить линии на группы и защитить именно их — по одному УЗО на группу автоматов.
Как решать такие задачки с групповой утечкой максимально быстро и точно
В нашем сервисе myfusebox можно создать виртуальные помещения и наполнить их разной нагрузкой. Система уже знает все особенности приборов и формулы для расчётов. Все вышеперечисленные расчёты вы можете в несколько кликов сделать в нашем визуальном калькуляторе. В итоге получите чёткие группы, разбитые по возможности объединять друг с другом и по суммарной мощности. Хотите, посчитаете только на 30 мА, а хотите, сделаете проект на 30 и 10 мА, алгоритмы знают про влажные помещения и приборы повышенной опасности.
Номинальный ток работы УЗО — ещё один важный параметр
Идём дальше, предположим, что мы определились использовать дифференциальный номинал 10 мА, но у УЗО ещё есть и номинальный ток работы — максимальный ток, при котором УЗО гарантирует работоспособность. Мы можем взять УЗО на 16 А, а может надо больше, как это понять? Разбираемся.
Номинальный ток УЗО — это ток, который может длительно протекать через устройство без его выхода из строя, с сохранением отключающей способности.
Так как в примере мы можем подключить в линию только стиралку, то в цепи рядом с УЗО будет только один автомат на 16 А. Почему именно на 16 — это отдельная статья. Для быстрого понимания: на освещение мы всегда ставим автоматы на 10 А, на обычные розетки — 16.
В этой связке мы не можем установить УЗО на 16 А, только на 25 А. Дело тут в особенностях автоматических выключателей, которые называются ВТХ (время-токовые характеристики). Без их детального разбора нам главное знать, что автомат, который отключает цепь при перегрузке или коротком замыкании имеет некоторый диапазон перегрузок, в пределах которого автомат будет какое-то время терпеть без моментального отключения.
Например, автомат типа C (у вас будет именно такой) может длительно пропускать через себя ток в 1.13 от своего номинала без отключения. В диапазоне 1.13 — 1.45 автомат начинает срабатывать, причём при превышении тока на 45% от номинала время срабатывания составит целый час. В нашем примере это значит, что при разгоне тока до 23 А вместо 16 автомат не будет отключаться 60 минут. Это не пойдёт на пользу УЗО на 16 А, а вот если номинальный ток УЗО будет 25 А, то всё в порядке.
Вы можете задать вопрос: если в выборе уставки со стиралкой мы еле-еле проходим по максимальную мощность устройства, то чего переживать за превышение тока? Ну превысит он 16 Ампер, какая разница, если наши 9 А от стиралки уже на границе отключения УЗО? По всей видимости, ток не успеет возрасти настолько, чтобы причинить вред УЗО, ведь оно отключится ещё раньше.
Может быть и так, но уставка может быть 30 мА, а автоматов в защищаемой линии больше одного, в этом сценарии ток может быть 20 А, но по уставке пока всё ещё нет отключения, зато УЗО уже вне режима нормальной работы.
Выбор номинала групповых УЗО
Представим, что мы защищаем не стиральную машину, а розетки в квартире. Деление всех потребителей на группы в рамках квартиры это тема отдельной статьи, сейчас мы представим, что планируем повесить все розетки в квартире на одну линию, наш предварительный подсчёт всей нагрузки привёл к тому, что УЗО на 30 мА не проходит и точно будет отключаться без веской причины. Нужно делить розетки, например, по комнатам.
В итоге отдельные группы проходят тест для защиты на 30 мА. Таким образом мы видим, что одно УЗО может защищать целую группу, а не отдельные устройства, а автоматический выключатель для этих потребителей будет не один, а несколько, как для удобства соединения, так и для удобства эксплуатации. Например, под одним УЗО будут 2 автомата: на комнату 1 и комнату 2. Их может быть и больше, это вопрос комплексного проектирования.
Поэтому правило такое:
номинальный ток УЗО должен выбираться на ступень выше суммы всех номиналов стоящих следом автоматов, несколько ли их или один, не важно. При этом не имеет смысла выбирать УЗО с номиналом выше вводного автомата.
Про дифавтомат
Это устройство, совмещающее в себе функцию дифференциальной защиты и защиты от сверхтоков, его маркировка несколько отличается от УЗО — рядом со значением номинального тока есть буквенное обозначения типа срабатывания, чаще всего в быту это будет “C”. Дифавтомат заменяет собой связку УЗО + автомат, это бывает удобно и экономит место в щитке, но в случае срабатывания мы точно не будем понимать причину.
УЗО и нулевой проводник
Не забываем, что в УЗО на вход приходит фаза и ноль, на выходе фаза распределяется на один или несколько автоматов, а нулевые проводники отходящих на потребители линий соединяются с нулевым выходом УЗО с помощью нулевой шинки, ну или напрямую в УЗО если у нас один автомат. Иначе схема защиты не будет работать, это очень важно для корректного мониторинга дифференциальных токов.
На изображении выше вы видели, как распределяется ноль после группового УЗО
Дополнение к формуле расчёта
Если вы просчитываете групповые линии, например, на те же розетки для комнат, то предусматриваете максимально возможную нагрузку на розетки. При этом нужно понимать, что в жизни вряд ли будут ситуации, когда во всех комнатах всё будет включено и при том на полную мощность. Поэтому в расчётах нужно использовать некоторый коэффициент для уменьшения суммарной мощности. Можете продумать сценарии использования, сделать это досконально, либо простым делением суммы на два, это на усмотрение проекта, в котором все детали будут видны, универсального ответа тут нет.
Ещё вы должны знать о реактивной составляющей. Некоторые устройства с электродвигателями в момент включения могут повышать ток линии значительно. Это различные компрессоры (тот же холодильник), помпы и двигатели. Тут тоже нет универсального совета, но подбирать номиналы для таких линий впритык не стоит, т.к. могут быть ложные срабатывания при старте. Часто коэффициент реактивной нагрузки принимают за 1.3
Вот в этой статье мы подробно разбираем как посчитать мощность линий с учётом коэффициентов и других параметров.
Противопожарные УЗО
Напоследок о противопожарных УЗО, это устройства дифференциальной защиты с током утечки 100 или 300 мА. Они служат для предотвращения возгораний неисправной проводки, в том числе внутри электрощита и вводного кабеля. Высокое значение уставки рассчитано именно на такую нештатную утечку, которая может являться предвестником возгорания. Ставим противопожарное УЗО для небольшой квартиры с уставкой 100 А и радуемся, также можно выбрать уставку 300 мА. Противопожарное УЗО защищает весь электрощит, поэтому устанавливайте его в верхней точке дерева распределения на группы, а фазный и нулевой выходы этого УЗО будут распределяться на входы групповых УЗО.
Вот вы и научились правильно рассчитывать уставку и номинальный ток УЗО, а главное точно подбирать характеристики с пониманием процесса.
В сервисе myfusebox вы можете сделать все расчёты за несколько секунд, у нас там алгоритмы, которые уже знают все аспекты и коэффициенты, работы на два клика. Какие номиналы выбрать, как соединить, все нюансы электрощита — просто зарегистрируйтесь и поиграйтесь с УЗО и нагрузкой.
MyFuseBlog — это сборник статей сервиса по созданию электрощитов MyFuseBox
Тут мы публикуем статьи, которые наши эксперты пишут специально для тех, кто планирует самостоятельно сделать электропроводку и собрать электрощит.
Как правильно подключить УЗО: схемы, варианты подключения, правила безопасности
Создание современной внутриквартирной электросети – ответственное мероприятие, связанное с расчетами, выбором проводов и электроустановок, монтажными работами. При этом одной из главных задач остается обеспечение безопасности жильцов и сохранности имущества. Вы согласны?
Если правильно подобраны защитные приборы и продумана схема подключения УЗО и автоматов, все риски снижаются до минимума. Но как это сделать? Что учесть при выборе? На эти и многие другие вопросы мы ответим в нашем материале.
Также вы сможете разобраться в принципе действия УЗО и вариантах его подключения. Советы экспертов и нюансы монтажа собраны в этом материале. Кроме того, в статье размещены видеоролики, из которых вы узнаете о главных ошибках при подключении и увидите, как подключается УЗО на практике.
Назначение и принцип действия УЗО
В отличие от автомата, который предохраняет сеть от перегрузок и коротких замыканий, УЗО предназначено для мгновенного распознавания наличия тока утечки и реагирования путем отключения сети или отдельной электрической линии.
Поскольку эти два защитных прибора отличаются функционально, то оба должны присутствовать в схеме сборки.
Принцип работы УЗО прост: сравнение величин входящей и выходящей силы тока и срабатывание при обнаружении несоответствия.
Внутри корпуса автоматического устройства находится трансформатор с сердечником и обмотки с равномерными магнитными потоками, направленными в разные стороны.
При возникновении тока утечки выходной магнитный поток уменьшается, в результате чего срабатывает электрореле и размыкает питание. Это возможно, если человек прикоснется к заземленному прибору и электроцепи. В среднем, на это уходит от 0,2 до 0,4 секунды. Подробнее об устройстве и принципе действия УЗО мы говорили здесь.
Существуют различные типы приборов, предназначенные для сетей с постоянным или переменным током. Одна из важных технических характеристик, которая обязательно присутствует в маркировке – сила тока утечки.
Для защиты жильцов дома выбирают устройства номиналом 30 мА. Там, где есть повышенный риск, например, санузлы с повышенной влажностью, игровые детские комнаты, устанавливают УЗО на 10 мА.
Более высокий номинал, например, 100 мА или 300 мА, предназначен для предотвращения пожара, так как крупные утечки тока способны вызвать возгорание. Такие устройства монтируют в качестве общего вводного УЗО, а также на предприятиях и крупных объектах.
Детальная информация по выбору подходящего УЗО изложена в этой статье.
АВДТ компактнее связки защитных приборов и занимает меньше места в электрошкафу, но при его срабатывании труднее найти причину отключения.
Схема установки выбирается в соответствии с поставленной задачей и видом сети – 1-фазной или 3-фазной. Если необходимо защитить дом или квартиру целиком от токовых утечек, УЗО устанавливают на входе силовой линии.
Варианты защиты для однофазной сети
О необходимости монтажа комплекта защитных приборов упоминают производители мощной бытовой техники. Нередко в сопроводительной документации к стиралке, электроплите, посудомойке или бойлеру указано, какие устройства необходимо дополнительно установить в сеть.
Учитывая количество различных контуров, обслуживающие розетки, выключатели, технику, максимально нагружающую сеть, можно сказать, что схем подключения УЗО бесконечное множество. В бытовых условиях можно даже установить розетку со встроенным УЗО.
Далее рассмотрим популярные варианты подключения, которые являются основными.
Вариант #1 – общее УЗО для 1-фазной сети.
Место УЗО – на входе силовой линии в квартиру (дом). Его устанавливают между общим 2-полюсным автоматом и комплектом автоматов для обслуживания различных электролиний — осветительных и розеточных контуров, отдельных ответвлений для бытовой техники и др.
Предположим, что произошла утечка тока из-за соприкосновения фазного провода с включенным в сеть металлическим прибором. УЗО срабатывает, напряжение в системе пропадает, и найти причину отключения будет довольно сложно.
Положительная сторона касается экономии: один прибор стоит дешевле, да и места в электрощите занимает меньше.
Вариант #2 – общее УЗО для 1-фазной сети + счетчик.
Отличительной чертой схемы является наличие прибора учета электроэнергии, установка которого обязательна.
Защита от утечки тока так же подключается к автоматам, но на входящей линии к ней присоединен счетчик.
Преимущества такого расположения те же, что и у предыдущего решения – экономия пространства на электрощите и денег. Недостаток – сложность обнаружения места утечки тока.
Вариант #3 – общее УЗО для 1-фазной сети + групповые УЗО.
Схема является одной из усложненных разновидностей предыдущего варианта.
Благодаря установке дополнительных приборов на каждый рабочий контур защита от токов утечки становится двойной. С точки зрения безопасности — это отличный вариант.
Чтобы сразу не срабатывали оба аппарата (частный и общий), необходимо соблюдать селективность, то есть при установке учитывать и время срабатывания, и токовые характеристики приборов.
Положительная сторона схемы – в аварийной ситуации отключится один контур. Крайне редко происходят случаи, когда отключается вся сеть.
Это может произойти, если установленное на конкретной линии УЗО:
- бракованное;
- вышло из строя;
- не соответствует нагрузке.
Чтобы подобных ситуаций не возникало, рекомендуем ознакомиться с методами проверки УЗО на работоспособность.
Минусы – загруженность электрощитка множеством однотипных приборов и дополнительные траты.
Вариант #4 – 1-фазная сеть + групповые УЗО.
Практика показала, что схема без монтажа общего УЗО тоже неплохо функционирует.
Конечно, страховки от несрабатывания одной защиты нет, но это легко исправить, купив более дорогостоящее устройство от производителя, которому можно доверять.
С точки зрения экономии, электромонтаж нескольких устройств проигрывает – один общий обошелся бы намного дешевле.
Если в вашей квартире электросеть не заземлена, рекомендуем ознакомиться со схемами подключения УЗО без заземления.
Схемы для 3-фазной сети
В домах, производственных помещениях и прочих сооружениях может встречаться иной вариант обустройства электроснабжения.
Так, для квартир подключение 3-фазной сети нехарактерно, зато для оснащения частного дома такой вариант не редкость. Здесь будут использоваться иные схемы подключения аппарата защиты.
Вариант #1 – общее УЗО для 3-фазной сети + групповые УЗО.
Для сети 380 В 2-полюсного прибора мало, необходим 4-полюсный аналог: нужно подключить 1 нулевую жилу и 3 фазных.
Важен вид проводов. Для 1-фазной сети подходит стандартный кабель ВВГ, тогда как для 3-фазной рекомендуется протягивать более стойкий к возгоранию ВВГнг. О выборе подходящего типа провода мы писали в другой нашей статье.
Вариант #2 – общее УЗО для 3-фазной сети + счетчик.
Это решение полностью повторяет предыдущее, но в схему добавлен счетчик электроэнергии. Групповые УЗО также включены в систему обслуживания отдельных линий.
Существует нюанс, который относится к любой из представленных схем. Если в квартире или доме несколько осветительных и розеточных контуров, несколько мощных бытовых приборов, требующих обустройства отдельных электролиний, то есть смысл устанавливать двойную защиту с общим УЗО.
В обратном случае достаточно либо общего аппарата, или по одному на каждый контур.
Инструкция по установке УЗО
Сначала нужно выбрать место для монтажа устройства. Применяются 2 варианта: щит или шкаф. Первый напоминает металлическую коробку без крышки, закрепленную на высоте, удобной для обслуживания.
Шкаф оснащен дверцей, которую можно закрывать на замок. Некоторые виды шкафов имеют отверстия, чтобы можно было снимать показания прибора учета, не распахивая специально дверцу, и отключать устройства.
К левым клеммам на входе и на выходе всегда подключают нулевой провод, к правым – фазный. Один из вариантов:
- входная клемма N (верхняя левая) – от вводного автомата;
- выход N (нижняя левая) – на отдельную нулевую шину;
- входная клемма L (верхняя правая) – от вводного автомата;
- выход L (нижняя правая) – к групповым автоматам.
К моменту установки защитного устройства на щите уже могут быть установлены автоматические выключатели. Чтобы упорядочить расположение приборов и проводов, возможно, придется переставить устройства в определенном порядке.
Представляем пример установки вводного УЗО в электрошкаф, где уже стоит счетчик, вводный автомат и несколько автоматических выключателей для отдельных контуров — осветительного, розеточного и др.
Как подключить узо в щитке на 220
Лучше всего осуществлять монтаж изделия после электрического счетчика, но перед автоматом.
К Вашему вниманию 4 типовых схемы подключения УЗО в однофазной сети.
Подсоединение одного общего АВДТ:
Схема монтажа нескольких устройств защитного отключения на каждую группу:
Подключение нескольких устройств защитного отключения вместе с вводным АВДТ:
Монтаж в двухпроводной сети (без заземления):
Учтите, что подключать аппарат нужно сверху, последняя картинка предоставлена только для наглядности, чтобы вы понимали, как монтируется УЗО в сети без заземляющего проводника. Также обратите внимание на то, что каждый из вариантов имеет следующую последовательность подсоединения элементов: вводной автомат – счетчик – УЗО. Такая схема подключения УЗО максимально защищает Вашу электропроводку от всех видов угроз.
Также хотелось предоставить Вам пару рекомендаций по составлению данной схемы:
- Если проводка в частном доме либо квартире будет включать в себя не один мощный электроприбор, то лучше для каждой группы проводников установить по отдельному устройству защитного отключения. Такой вариант позволит контролировать каждый прибор отдельно и в свою очередь при неполадках отключать электроэнергию не во всей электросети, а только в определенном месте.
- Если электросеть будет простой, без мощной бытовой техники, то лучше использовать установку дифавтомата. Данный аппарат одновременно защищает сеть не только от токов утечки, но и от КЗ вместе с перегрузками (функции АВ).
На видео ниже наглядно рассматриваются предоставленные варианты монтажа автоматическиого выключателя дифференциального тока , а также объясняется, где рационален каждый из способов подсоединения:
Вот и все, что хотелось рассказать о схемах подключения УЗО в однофазной сети с заземлением и без так называемой «земли». Надеемся, что данные проекты были для Вас полезными и понятными!