Схемы и нюансы подключения светодиодных светильников к сети 220 В
Внимание! В этой публикации приводятся примеры схем, с питанием от опасного для жизни напряжения 220В. Собирать и испытывать такие схемы разрешается только лицам, имеющим необходимое образование и допуски!
Самая простая схема
Светодиодная лампа на 220 В — это одна из разновидностей ламп освещения, световой поток в которой создается за счет преобразования электрической энергии в световой поток с помощью кристалла светодиода. Для работы светодиодов от стационарной бытовой сети 220 В необходимо собрать самую простейшую схему, изображенную ниже на рисунке.
Схема светодиодной лампы на 220 вольт состоит из источника переменного напряжения 220–240 В, выпрямительного моста для преобразования переменного тока в постоянный, ограничительного конденсатора С1, конденсатора для сглаживания пульсаций С2 и светодиодов, подключаемых последовательно от 1-го до 80 штук.
Принцип работы
При подаче переменного напряжения 220 В переменной частоты (50 Гц) на драйвер светодиодной лампы, оно проходит через токоограничивающий конденсатор С1 на выпрямительный мост, собранный из 4-х диодов.
После этого на выходе моста мы получаем постоянное выпрямленное напряжение, требующееся для работы светодиодов. Однако для получения непрерывного светового потока, в драйвер необходимо добавить электролитический конденсатор C2 для сглаживания пульсаций, возникающих при выпрямлении переменного напряжения.
Глядя на устройство светодиодной лампы на 220 вольт, мы видим, что там присутствуют сопротивления R1 и R2. Резистор R2 служит для разрядки конденсатора для защиты от пробоя при выключенном питании, а R1 — для ограничения тока, подаваемого на светодиодный мост при включении.
Наиболее частые ошибки в подключении люстры
Ошибки при монтаже и подключении встречаются не только у начинающих электриков, даже у опытных специалистов нередко случается так, что люстра светит совсем не так, как должна. Ошибки эти типичны и банальны.
Если количество проводов в люстре и на потолке не совпадают
Может оказаться так, что в приобретенной вами люстре имеется три провода, но проводов на потолке, где крепится люстра, всего два, и выключатель, соответственно, одинарный. Либо наоборот. Алгоритм подключения трехрожковой люстры к одинарному выключателю выглядит так:
- Нулевой провод люстры подключить к нулевому проводу на потолке.
- В клеммной колодке люстры установить перемычку между фазными проводами либо зажать их в одной клемме и подключить к фазному проводу на потолке.
При такой схеме подключении регулировать уровень освещенности уже не получится.
В противоположной ситуации, когда в домашней электропроводке имеется три провода (два фазных и один нулевой) и двойной выключатель, а в люстре всего два провода, подключение выполняется в следующей последовательности:
- При помощи индикатора напряжения необходимо определить нулевой провод, подключить его к любому из проводов на люстре.
- Два других провода (фазных) зажать в одной клемме, либо поставить перемычку.
Неправильное подключение двойного выключателя
Это наиболее распространенная ошибка, заключающаяся в том, что входящий фазный провод подключают к одному из выходных контактов выключателя. При такой схеме подключения люстра не может нормально функционировать, так как одна секция ламп включается только при условии, что на другую секцию подано напряжение.
То есть, если входящая фаза подключена к левому контакту выключателя, при нажатии левой клавиши фаза заходит в распределительную коробку через нижний входной контакт и включает одну секцию ламп. При последующем нажатии правой клавиши включается и другая секция. Но при размыкании левой клавиши отключаются все секции.
При отжатой левой клавише невозможно включить правую клавишу.
Причина зависимости правой клавиши от левой в том, что изначально фаза зашла через входной контакт выключателя левой клавиши, и левая клавиша при выключении разрывает фазу сразу на обеих секциях.
Для устранения этой ошибки следует поменять местами подключения входящей в выключатель и выходящей фазы.
Вместо фазного провода через выключатель проходит нулевой провод
Согласно правил устройства электроустановок предусмотрен порядок подключения выключателя, который замыкает и размыкает цепь посредством разрыва именно фазы. Как это выглядит на схеме? Нулевой провод, минуя выключатель, проложен из распределительной коробки напрямую к нулевому проводу потолочного светильника. Фазный провод из распределительной коробки проходит через клавишу выключателя, которая разрывает цепь.
Однако на практике иногда встречается неправильное подключение: через выключатель проходит не фазный, а нулевой провод. То есть при отключении клавиши выключателя электропроводка остается под напряжением, несмотря на то, что освещение не горит. Чревато это тем, что возможно поражение электрическим током при замене лампы, при случайном касании оголенных частей плафона люстры либо при нарушении изоляции провода.
Поэтому по возможности желательно устранить подобную ошибку в подключении.
Обнаружить данное нарушение схемы подключения можно при помощи индикатора напряжения, который при положении выключателя в состоянии «отключено» показывает наличие фазы на потолочных проводах.
Неправильная схема подключения нулевого провода люстры
Эта ошибка является причиной того, что в люстре нормально включается только часть лампочек, остальные либо светят слабо, либо вовсе не включаются. Как уже ранее рассмотрено, при наличии трех проводов фазные провода присоединяются каждый к отдельной секции лампочек, нулевой же провод является общим для всех лампочек, которые параллельно все присоединены к нему.
Если перепутать провода, и соединенные между собой лампочки, допустим, первой секции подключить к нулю вместо фазы, а к фазе подключить все лампочки обеих секций (вместо нуля), то при нажатии первой клавиши в первой секции лампочки будут включаться, так как туда одновременно заходят и ноль и фаза.
При нажатии второй клавиши во второй секции лампочки не будут светить, так как оба входящих провода будут фазные, а для того, чтобы лампочка светила, к ней нужно подавать фазу с нулем одновременно.
Схема с активным ограничителем тока
В этом варианте схемы ограничивающим ток элементом является сопротивление R1. Такая схема будет иметь показатель коэффициента мощности или cos φ близкий к единице, в отличие от предыдущих вариантов с токоограничивающим конденсатором, представляющих из себя реактивную нагрузку. Недостаток такого варианта в необходимости рассеивать значительное количество тепла на резисторе R1.
Для разрядки остаточного напряжения конденсатора C1 до нуля в схеме применен резистор R2.
Расшифровка маркировки электропроводов
Для удобства идентификации и во избежание путаницы изоляция жил кабеля отличается цветами. Согласно стандартам, провод заземления имеет желтый цвет с полоской зеленого оттенка.
Такой проводник встречается в новостройках, где обеспечен высокий уровень защиты от поражения током.
В домах со старой проводкой расшифровка назначения кабеля затруднена, т.к. раньше цвет изолирующего материала применялся одинаковый. Для начала электромонтажных работ потребуется сделать прозвон кабеля (+)
Маркировка нейтрального проводника осуществляется изолирующей оболочкой синего или голубого цвета, в которую заключена жила. Для фазы могут применяться любые другие вариации оттенков, кроме указанных.
Устройство светодиодных ламп для цепей переменного тока напряжением 220В
Светодиодные лампочки состоят из следующих компонентов:
- Цоколя (Е27, Е14, Е40 и так далее) для вкручивания в патрон светильника, бра или люстры;
- Диэлектрической прокладки между цоколем и корпусом;
- Драйвера, на котором собрана схема для преобразования переменного напряжения в постоянного необходимой величины;
- Радиатора, который служит для отвода тепла от светодиодов;
- Печатной платы, на которую впаиваются светодиоды (типоразмеров SMD5050, SMD3528 и так далее);
- Резисторов (чипы) для защиты светодиодов от пульсирующего тока;
- Светорассеивателя для создания равномерного светового потока.
Необходимое оборудование
Перед началом работы подготовьте необходимые инструменты:
- вольтметр*;
- омметр*;
- индикаторную отвертку;
- нож для зачистки;
- пассатижи;
- изоляционную ленту;
- клеммную колодку;
- электроизоляционные трубки (кембрики);
- стремянку или стол.
* эти измерительные приборы являются составляющими компонентами мультиметров, которые также можно использовать для прозвонки электрических цепей.
Как подключить светодиодные лампы на 220 вольт
Самая большая хитрость при подключении светодиодных ламп на 220 в, что никакой хитрости нет. Подключение происходит абсолютно точно также, как вы это делали с лампами накаливания или компактными люминесцентными лампами (КЛЛ). Для этого: обесточьте цоколь, а затем вкрутите в него лампу. При установке никогда не касайтесь металлических частей лампы: помните, что иногда нерадивые электрики вместо фазы могут провести через выключатель ноль. В таком случае, фазное напряжение никогда не будет сниматься с цоколя.
Производители выпустили светодиодные аналоги всех, выпускавшихся ранее типов ламп с самыми разными цоколями: Е27, Е14, GU5.3 и так далее. Принцип установки для них остается такой же.
Если же Вы купили светодиодную лампочку, рассчитанную на 12 или 24 Вольта, тогда Вам не обойтись без блока питания. Подключение источников света производится параллельно: все «плюсы» лампочек вместе к плюсовому выходу блока питания, а все «минусы» вместе — к «минусу» блока питания.
В данном случае, важно соблюдать полярность («плюс» — к «плюсу», «минус» — к «минусу»), поскольку светодиоды будут испускать световой поток только в том случае, если соблюдена полярность! Некоторые изделия при переполюсовке могут выйти из строя.
Внимание! Не перепутайте блок питания (источник питания) постоянного напряжения с трансформатором. Трансформатор дает на выходе переменное напряжение, в то время как источник питания — постоянное напряжение.
Например, у вас есть мебельная подсветка на кухне, в гардеробе или в другом месте, составленная из 4-х галогенных ламп мощностью 40 Вт и напряжением 12 В, запитанных от трансформатора. Вы решили заменить эти лампы на светодиодные 4 штуки по 4–5 Вт.
Внимание! В этом случае необходимо заменить используемый ранее трансформатор на источник постоянного напряжения 12 В мощностью не менее 16–20 Вт.
Иногда подобные светодиодные лампы для точечных светильников в большинстве случаев комплектуются блоком питания на заводе-изготовителе. При покупке таких ламп следует одновременно озадачиться и покупкой источника питания.
Коротко о главном
В основе светодиодного светильника лежит полупроводниковый кристалл. При прохождении через него тока, выделяется световое излучение. К основным компонентам прибора также относится драйвер, радиатор и рассеиватель. Главные преимущества лед-лампы – большой срок службы, экономный расход электроэнергии, безвредность, стойкость, неприхотливость, разнообразие светотехнических параметров. Недостаток – высокая цена.
В стандартном исполнении светодиодные лампы выпускаются номиналом на 220 и 12 вольт, их можно подключить как вместо обычных лампочек накала напрямую, так и люминесцентных светильников по следующим схемам:
- Последовательно.
- Параллельно.
- Лучевым.
Кроме того, существует способ замены ламп дневного света на лед-трубки в корпусе старых ПРА-моделей или новых электронных аналогов. В каждом случае есть свои особенности и технические нюансы.
Как сделать простую светодиодную лампочку
Для того, чтоб собрать светодиодную лампу нам потребуется старая люминесцентная лампа, точнее ее основание с цоколем, длинный кусок 12 В светодиодной ленты,
и пустая алюминиевая 330 мл банка
Для питания такой лампы понадобится источник постоянного напряжение на 12 В такого размера, чтобы без проблем вошел внутрь банки.
Итак, теперь само изготовление:
- Обмотайте лентой банку, как показано на рисунке.
- Припаяйте провода от светодиодной ленты к выходу источника питания (ИП).
- Вход ИП проводами припаяйте к цоколю основания лампы.
- Сам источник надежно закрепите внутри банки, предварительно вырезав достаточное по размеру отверстие для пропускания ИП внутрь.
- Приклейте банку с лентой к основанию корпуса с цоколем и лампа готова.
Конечно, такая лампа не шедевр дизайнерского искусства, но зато сделана своими руками!
Подготовка: прозвонка и определение фаз на потолке
- 1 Подготовка: прозвонка и определение фаз на потолке 1.1 Провод заземления
- 1.2 Ищем фазы и ноль
-
2.1 Подключение к двойному выключателю
Тем, кто хоть немного значком с электросетями это не понадобится, остальным будет полезно. Человеку, не имеющему постоянно дела с электричеством ориентироваться бывает сложно. Чтобы не путаться, расскажем все по порядку: как найти в проводах на потолке фазу (или фазы) и ноль, что делать с заземлением. А потом, как целую кучу проводов на люстре, соединить с теми, что торчат наверху. В результате подключение люстры своими руками будет для вас простой задачей.
Провод заземления
Если проводка уже сделана, на потолке торчат два, три или четыре провода. Один из них — точно «ноль», остальные — фаза, еще может быть заземление.
Провод заземления есть в домах новой постройки или недавно отреставрированных
Провод заземления есть далеко не всегда, только в домах новой постройки или после капитального ремонта с заменой электропроводки. Согласно стандарту он имеет желто-зеленый цвет и подключается к такому же проводу на люстре. Если на вашей люстре его нет, оголенный провод тщательно изолируем и оставляем в таком виде. Оставить его незаизолированным нельзя — случайно можете закоротить.
Ищем фазы и ноль
С остальными проводами нужно разбираться: где «фаза» а где «ноль». В домах старой постройки все провода обычно одного цвета. Чаще всего — черного. В новостройках могут быть черные и синие, или коричневые и синие. Иногда присутствует красный. Чтобы не гадать по цветам, проще их прозвонить.
Если на потолке у вас три провода, а на стене двухклавишный выключатель, у вас должно быть две «фазы» — на каждую из клавиш и один «ноль» — общий провод. Прозванивать можно мультиметром (тестером) или индикаторной отверткой (это специальная отвертка с лампочкой, которая загорается при наличии напряжения). При работе перевести клавишу выключателя в положение «включено» (входной автомат на щитке тоже включен). После прозвонки, клавиши выключателя переведите в положение «выключено». Если есть возможность, лучше вырубить и автомат на щитке и подключать люстру с выключенным питанием.
Прозвонка проводов на потолке темтером
Как прозвонить и определить провода тестером показано на фото. Выставляете переключатель в положение «вольты», выбираете шкалу (больше 220 В). Попеременно касаетесь щупами пар проводов (щупы, держите за ручки, к оголенным проводникам не прикасайтесь). Две фазы между собой не «звонятся» — на индикаторе никаких изменений не будет. Если вы нашли такую пару, скорее всего, — это две фазы. Третий провод, скорее всего, «ноль». Теперь каждую из предполагаемых фаз соединяйте щупами с нулевым. На индикаторе должно быть 220 В. Вы нашли ноль — в международной спецификации он обозначается буквой N — и две фазы — обозначаются L. Если все провода одного цвета как-то обозначьте их: краской, цветным маркером, куском липкой ленты. Фазы — одним цветом, ноль — другим.
Работать индикаторной отверткой проще: просто прикасаетесь ее концом к оголенному проводнику. Светится — фаза, нет — ноль. Очень просто.
Использование индикаторной отвертки для поиска фазы
Если проводов торчит только два, то один из них — фаза, другой — ноль. При этом на выключателе одна клавиша. Других вариантов нет.
О правилах и способах соединения проводов в распределительной коробке читайте тут.
Основные неисправности светодиодных ламп на 220 вольт
Исходя из многолетнего опыта, если не горит светодиодная лампа 220 в, то причины могут быть следующими:
Выход из строя светодиодов
Поскольку в светодиодной лампе все светодиоды подключены последовательно, если выходит хотя бы один из них, вся лампочка перестает светится поскольку возникает обрыв цепи. В большинстве случаев светодиоды в лампах на 220 применяются 2-х типоразмеров: SMD5050 и SMD3528.
Для устранения этой причины необходимо найти вышедший из строя светодиод и заменить его на другой, или же поставить перемычку (перемычками лучше не злоупотреблять — так как они могут увеличить ток через светодиоды в некоторых схемах). При решении проблемы вторым способом незначительно уменьшится световой поток, однако лампочка опять станет светить.
Чтоб найти поврежденный светодиод нам понадобится источник питания с низким током (20 мА) или мультиметр.
Для этого подаем «+» на анод, а «–» на катод. Если светодиод не засветится, значит он вышел из строя. Таким образом нужно проверить каждый из светодиодов лампы. Также вышедший из строя светодиод можно определить визуально, это выглядит примерно так:
Причиной данной поломки в большинстве случаев является отсутствие какой-либо защиты светодиода.
Выход из строя диодного моста
В большинству случаев при таковой неисправности основная причина — заводской брак. И в таком в случае зачастую «вылетают» и светодиоды. Для решения данной проблемы необходимо заменить диодный мост (или диоды моста) и проверить все светодиоды.
Чтобы проверить диодный мост необходим мультиметр. Необходимо подать на вход моста переменное напряжение 220 В, и проверить напряжение на выходе. Если на выходе оно остается переменным, то значит диодный мост вышел из строя.
Если диодный мост собран на отдельных диодах, их можно поочередно выпаять и проверить прибором. Диод должен пропускать ток только в одном направлении. Если он вообще не пропускает ток или пропускает при подаче на катод положительной полуволны значит он вышел из строя и требует замены.
Плохая пайка выводных концов
В данном случае нам будет необходим мультиметр. Нужно разобраться в схеме светодиодной лампы и далее проверять все точки, начиная со входного напряжения 220 В и заканчивая выводами светодиодов. Исходя из опыта, данная проблема присуща дешевым светодиодным лампам и чтоб ее устранить достаточно паяльником дополнительно пропаять все детали и компоненты.
Лучевой
Лучевая схема по своей природе относится к параллельному методу подключения и часто встречается в люстрах. Он подразумевает прокладку питания к каждому светильнику индивидуально. Такой вариант более затратный, так как требует наибольшего количества провода. Чтобы сэкономить, прокладывают кабель в центр комнаты, откуда до каждого светильника будет равное расстояние. Далее к нулю и фазе подключаются одножильные провода, которые тянутся к осветительным приборам.
Важно решить, как будут соединены жилы кабеля с отдельным проводом. Если ламп немного, то можно довольствоваться обычно скруткой. Важно ее надежно обжать пассатижами и сварить воедино. В таком случае соединение выходит неразъемным и требует много времени для реализации. Для более безопасного варианта понадобится приобрести клеммы с нужным количеством выходов. На каждую жилу одевается разъем, и уже от него тянут провода к лампам.
Шлейфное и лучевое соединение ламп
При желании в цепь можно подключить диммеры — устройства, позволяющие управлять яркостью светильников.
Где купить лампу
Максимально быстро закрыть вопрос можно в ближайшем специализированном магазине. Оптимальным же, по соотношению цена-качество, остаётся вариант покупки в Интернет-магазине АлиЭкспресс. Обязательное длительное ожидание посылок из Китая осталось в прошлом, ведь сейчас множество товаров находятся на промежуточных складах в странах назначения: например, при заказе вы можете выбрать опцию «Доставка из Российской Федерации»:
Светодиодный прожектор Nieuwe MR16 GU5.3 высокой мощности, 6 Вт, 9 Вт, 12 Вт | Светодиодный светильник Ampoule, Е14, Е27, GU10 | Cветодиодная лампа с Bluetooth, E27, E14, GU10, RGB |
Точечный светодиодный светильник E27, GU10, E14 | Светодиодный светильник для дома | Светодиодная люстра с уникальным дизайным |
Использование заземления
Новые постройки для соблюдения существующих норм в обязательном порядке оснащаются электропроводкой с заземляющими проводниками. Как уже указывалось, такие провода маркируются желто-зеленой расцветкой. В таком случае для люстры с двумя группами ламп из потолка будут выходить 4 провода: заземляющий, нулевой и два фазных, от выключателя.
На светильниках с металлическими деталями обычно предусматривается клемма для подключения заземления. Поэтому когда производится подключение светильника, нужно не забыть также и про заземление на люстру. Если клемма заземления отсутствует, то провод заземления можно не подключать. Нужно только его заизолировать и спрятать под корпусом светильника.
Расчет гасящего конденсатора для светодиода
Подключение светодиодных светильников даже по самой удачной схеме выполняется после расчета характеристик резистора, дополнительных диодов, и, конечно, конденсатора. Емкость последнего вычисляют следующим образом.
Допустим, частота сети составляет обычные 50 Гц. Необходимо подсоединить светодиод в 20 мА, на который припадает 2 В. Необходимый коэффициент пульсаций составляет 2,5%.
- Светодиод представляют как простой резистор. Коэффициент пульсаций разрешается заменить напряжением на конденсаторе. Получается следующее: Кп = (Umax – Umin) / (Umax + Umin) ⋅ 100%, где после подстановки данных получают 2.5% = (2В – Umin) / (2В + Umin) ⋅ 100% => Umin = 1.9В.
- Используя типичную осциллограмму напряжения, можно вычислить время заряда конденсатора. tзар = arccos(Umin/Umax) / 2πf = arccos (1.9/2) / (2⋅1415⋅50) = 0.0010108 с. Остальной промежуток времени конденсатор разряжается. Так как в стандартной схеме используется двухполупериодный выпрямитель, этот показатель уменьшают вдвое.
На деле ради 1 светодиодного светильника такой мощный конденсатор не устанавливают. Чтобы модифицировать схему, вместо обычного резистора в схему включают реактивное сопротивление – второй конденсатор.
Техника безопасности
При выполнении подсоединения люстры, любых электрических работ необходимо соблюдать осторожность, быть предельно внимательным. Получение электротравмы вызывает остановку сердца, может произойти спазм дыхательных мышц. Правила достаточно просты:
- Проведение любых работ проводится только при отключении питания, даже если требуется поменять лампочку;
- Отключение напряжение производится на общем вводном автомате жилого помещения. Щелкнуть клавишами выключателя недостаточно, так как возможно изначально неправильное подключение;
- Весь инструмент должен иметь ручки, покрытые изоляционным материалом, без признаков повреждений;
- Перед началом выполнения работ необходимо убедиться, индикаторной отверткой, что напряжение отсутствует;
- Под ноги желательно постелить диэлектрический коврик, или использовать материал, который не проводит электричество.
Без демонтажа
Самый простой способ это без демонтажа, но придется докупить пару зажимов Wago. Выкусываете вообще все провода подходящие к патрону на расстоянии 10-15мм или более. Далее заводите их в один и тот же зажим Ваго.
Тоже самое проделываете с другой стороной светильника. Если у клеммника wago недостаточно контактов, придется использовать 2 шт.
После этого, все что остается – подать в зажим на одну сторону фазу, а на другую ноль.
Нет Ваго, просто скручиваете провода под колпачок СИЗ. При таком методе, вам не нужно разбираться с существующей схемой, с перемычками, лезть в контакты патронов и т.п.
Необходимые инструменты
Инструмент для снятия изоляции с проводов – стриппер
Для подключения осветительных приборов своими руками потребуются следующие рабочие инструменты:
- набор отверток (плоская и крестообразная);
- инструмент, предназначенный для оголения проводов (удаления изоляционного слоя);
- плоскогубцы.
Как показывает практика, на монтаж устройства своими руками требуется не более 10-15 минут.
Как подключить светодиодную лампу
Светодиод – полупроводниковый прибор, преобразующий электрический ток в видимый свет. Различают осветительные и индикаторные устройства. Они обладают разной мощностью, допустимой силой тока, напряжением, яркостью. Можно подключить светодиод к 220В, к 110В, к 1,5В, но только через устройство, ограничивающее электрический ток.
Особенности подключения светодиодного светильника к 220В
Принцип работы светодиодного светильника заметно отличается от всех остальных приборов такого рода устройств. Свет в данном случае генерирует полупроводниковый кристалл. Тело накаливания, как в других лампах, здесь попросту отсутствует, так как в полупроводнике электрический ток непосредственно преображается в световое излучение. Такое устройство не нагревается, генерирует световое излучение точно указанной световой температуры и отличается долговечностью.
Однако светодиод 220 Вольт или другой мощности работает только при пропускании тока в прямом направлении. То есть для такого светильника требуется постоянный ток с напряжением в 4–12 Вольт. Соответственно, непосредственно в бытовую электрическую сеть включить светодиод в 220В нельзя.
Правила безопасности при подключении
Техника безопасности в данном случае сводится не столько к предупреждению угрозы для здоровья, сколько к предотвращению поломки приборов и короткого замыкания. Рекомендации просты:
- не допускается прямое подключение светодиодных ламп к сети с переменным током и напряжением в 220В;
- прежде чем подключать любой вариант светильника, необходимо изучить технические характеристики;
- следует определить катод и анод у светодиода, как правило, длинная ножка выступает плюсом, то есть является анодом, а короткая, соответственно, катодом;
- необходимо рассчитать схему подключения светодиода к сети в 220В с учетом напряжения;
- эффективную работу прибора обеспечивает блок питания или драйвер с оптимальной мощностью;
- перед подключением обязательно определяют полярность светодиода;
- рекомендуется разделять резисторы на 2 части, чтобы снизить риск поражения током;
- необходимо тестировать конструкцию – включить и замерить уровень потребляемого тока в 220В.
Наиболее экономичным и простым решением проблемы является монтаж диммируемых устройств. Здесь достаточно определить мощность прибора.
Схемы подключения светодиода к 220В
Полупроводник пропускает ток только в одном направлении. Однако в сети в 220В имеется переменный ток, где с частотой в 50 Гц направление тока меняется. Чтобы компенсировать этот эффект и подключить светодиодную лампу, требуется выпрямитель какого-либо типа, способный погасить обратное напряжение.
В таком качестве выступает резистор, конденсатор, выпрямительный мост. Соответственно, подключить светодиод к сети в 220 Вольт можно несколькими способами. Чаще всего в быту используется схема с резистором, поскольку такой способ прост в монтаже и доступен по стоимости.
Как подключить светодиодный светильник последовательным способом
Такое подсоединение выполняется очень легко и вполне годится для бытовых светодиодных приборов и сети в 220 Вольт.
- Для начала рассчитывают требуемую мощность резистора и учитывают необходимость в защите от обратного напряжения. Теоретически при подсоединении светодиода, мощностью, например, в 3 Вольта, «избыток» в 217 Вольт оседает на резисторе. Однако на деле обратная полуволна в этом случае подается на светодиод, а не на резистор, а так как обратное напряжение у полупроводников невелико – до 30 Вольт, прибор быстро выходит из строя.
- Все элементы цепи – резистор, диод защиты и светодиод подключаются последовательно.
Как подключить светодиодный светильник к 220В параллельным способом
Подсоединить светодиодный светильник можно и параллельно. Такая схема более надежна, хотя не исключает эффект мерцания.
- Индикаторный диод подключают параллельно светодиоду. Диод должен иметь обратное включение. При первой полуволне работает индикаторный диод, при второй – светодиод. Напряжение, падающее на последний, не превышает 1 Вольт, что делает такую схему более долговечной.
- Мощность резистора и здесь должна быть избыточной – он нагревается.
Снизить эффект мерцания позволяет параллельная установка 2 светодиодов. При подсоединении к сети в 220В при одной полуволне включается 1 светодиод, при второй – параллельный ему. При таком расположении оба элемента в нужной степени защищены от избыточного обратного напряжения.
Схема включения светодиода в сеть 220 вольт лучевым соединением
Запитать светодиод от сети 220В таким способом – лучший вариант, так как метод предупреждает излишний нагрев всех деталей цепи и исключает заметные для глаза мерцания. Кроме того, цепь, включающая конденсатор, потребляет меньше тока. Минус схемы – подключение светодиодных ламп требует больше времени и подразумевает цепь из большого количества элементов.
- Вместо резистора основную нагрузку по выпрямлению тока берет на себя конденсатор. Использовать необходимо пленочное устройство – электролит не годится. Рассчитано на напряжение как минимум в 250 Вольт, а лучше в 400 Вольт.
- Параллельно конденсатору в цепь включают резистор. Его задача – разряд конденсатора после того, как светильник отключают от сети в 220 Вольт.
- Параллельно светодиоду подсоединяют диодный мост – его можно приобрести готовым, а можно самостоятельно сделать из 4 диодов с подходящими характеристиками. Максимальная сила тока моста должна быть выше, чем аналогичный показатель у светодиода. Возможное обратное напряжение – не менее 400 Вольт. Мост подсоединяется в обратном направлении по сравнению со светодиодным элементом.
- Последовательно конденсатору в цепь вставляют еще один резистор – токоограничительный. Его цель – защитить схему от случайных скачков напряжения в сети на 220 Вольт.
В такой схеме все элементы нагреваются незначительно, что обеспечивает высокую долговечность и надежность.
Схема шунтирования светодиода обычным диодом
Необходимость шунтирования доказана практикой. Теоретическая схема подключения светодиода без дополнительного элемента оказывается несостоятельной.
Рабочая схема включает индикаторный обычный диод с той же полярностью, что и светодиодное устройство. При этом излишне высокое напряжение обратной волны оседает на диодном элементе, а остаточное напряжение светодиод пробить уже не может. Диод монтируют между резистором и светодиодом.
Расчет гасящего конденсатора для светодиода
Подключение светодиодных светильников даже по самой удачной схеме выполняется после расчета характеристик резистора, дополнительных диодов, и, конечно, конденсатора. Емкость последнего вычисляют следующим образом.
Допустим, частота сети составляет обычные 50 Гц. Необходимо подсоединить светодиод в 20 мА, на который припадает 2 В. Необходимый коэффициент пульсаций составляет 2,5%.
- Светодиод представляют как простой резистор. Коэффициент пульсаций разрешается заменить напряжением на конденсаторе. Получается следующее: Кп = (Umax – Umin) / (Umax + Umin) ⋅ 100%, где после подстановки данных получают 2.5% = (2В – Umin) / (2В + Umin) ⋅ 100% => Umin = 1.9В.
- Используя типичную осциллограмму напряжения, можно вычислить время заряда конденсатора. tзар = arccos(Umin/Umax) / 2πf = arccos (1.9/2) / (2⋅1415⋅50) = 0.0010108 с. Остальной промежуток времени конденсатор разряжается. Так как в стандартной схеме используется двухполупериодный выпрямитель, этот показатель уменьшают вдвое.
- Затем вычисляют емкость по формуле и получают C = ILED ⋅ dt/dU = 0.02 ⋅008989/(2-1.9) = 0.0018 Ф (или 1800 мкФ).
На деле ради 1 светодиодного светильника такой мощный конденсатор не устанавливают. Чтобы модифицировать схему, вместо обычного резистора в схему включают реактивное сопротивление – второй конденсатор.
Как подключить светодиодную ленту на 220 вольт
Нередко в быту вместо крупного прибора, который может выступать светильником, предпочитают установить подсветку. Для нее лучше всего использовать готовые светодиодные ленты. Монтаж очень прост, так как установщику нужно лишь следовать инструкции: все составляющие подсоединения при монтаже используют уже в готовом виде.
- Светодиодная лента – ряд последовательно закрепленных светодиодов. К блоку питания они присоединяются параллельно, друг к другу лучше монтировать платы тоже параллельно.
- Для начала определяют плюс и минус блок питания. Обычно красный шнур – это плюс, а синий или черный – минус. Если шнур отсутствует, подключение производят через маркированные зажимы.
- Лучше всего подсоединить ленту пайкой. В определенных случаях удобней использовать коннекторы. При монтаже требуется лишь отодвинуть зажимную пластину, насадить коннектор на край ленты и сдвинуть зажим назад. Затем провод от коннектора подсоединяют к блоку.
Если предполагается монтаж цветной ленты, схема будет включать контроллер, отвечающей за включение и отключение отдельных светодиодов.
Заключение
Подключить светодиод к 220В можно лишь с помощью дополнительных устройств. Схема подсоединения может включать резисторы, конденсаторы, выпрямительные мосты. Задача таких элементов – выпрямить переменный ток и предотвратить действие обратной волны напряжения на светодиод.
Конденсаторы для светодиодных лампочек
А в посылке – два пакета с кондёрами, ровно по 50шт. в каждом. Заказал ещё вот эти кондёры
https://aliexpress.com/item/snapshot/310648393.html $7.85 (50шт.) у этого же продавца.
Выбирал не только по напряжению и ёмкости, но и по размерам. Они должны быть минимальны, иначе не везде применишь.
А ещё я заказал диоды.
https://aliexpress.com/item/snapshot/6008595825.html $8.21 (1000шт.)
С диодами я конечно перебрал. 1000штук – это много. Но разница в цене между 100 и 1000 просто смешная. Диоды 1N4007 (1A 1000V)имеют широчайшее применение в импортной бытовой технике. Можно сказать, ни одно изделие без них не обходится. Можно и в нашей применить. Пусть лежат, если что, подарю часть своим знакомым.
Ну а теперь перейдём к делу.
Берём стандартную китайскую лампочку. Вот её схема (немного усовершенствованная).
Добавил R4, будет вместо предохранителя, а также смягчит пусковой ток. Ток через светодиоды определяет номинал ёмкости С1. В зависимости от того, какой ток мы хотим пропустить через светодиоды, и рассчитываем его ёмкость по формуле (1).
Для расчётов нам необходимо знать падение напряжения на светодиодах. Вычисляется просто. Светодиод ведёт себя в схеме как стабилитрон с напряжением стабилизации около 3В (есть исключения, но ооочень редкие). При последовательном подключении светодиодов падение напряжения на них равно количеству светодиодов, умноженному на 3В (если 5 светодиодов, то 15В, если 10 — 30В и т.д.). Допустим, мы хотим сделать лампочку на десяти светодиодах 5730smd. По паспортным данным максимальный ток 150мА. Я не сторонник насилия. Поэтому рассчитаем лампочку на 100мА. Будет запас по мощности. А запас, как говорится, карман не тянет.
По формуле (1) получаем: С=3,18*100/(220-30)=1,67мкФ. Такой ёмкости промышленность не выпускает, даже китайская. Берём ближайшую удобную (у нас 1,5мкФ) и пересчитываем ток по формуле (2).
(220-30)*1,5/3,18=90мА. 90мА*30В=2,7Вт. Это и есть расчетная мощность лампочки. Всё просто. В жизни конечно будет отличаться, но не намного. Всё зависит от реального напряжения в сети, от точной ёмкости балласта, реального падения напряжения на светодиодах и т.д. Кстати при помощи формулы (2) вы можете рассчитать мощность уже купленных лампочек. Падением напряжения на R2 и R4 можно пренебречь, оно незначительно. Можно подключить последовательно достаточно много светодиодов, но общее падение напряжения не должно превышать половины напряжения сети (110В). При превышении этого напряжения лампочка болезненно реагирует на все изменения напряжения сети. Чем больше превышает, тем болезненнее реагирует (это дружеский совет).
И всё же, на сколько точны номиналы ёмкостей, проверим. Сначала 2,2мкФ.
Теперь 1мкФ.
Погрешности небольшие, не более 2%. Можно смело брать.
Перейдём к практическому применению. Кому интересно, посмотрите, куда применил. Это уже было в одном из предыдущих обзоров, поэтому спрятал под спойлер.
В одном из моих обзоров подключал панели к драйверу на кондёрах. Вот такая лампочка получилась из энергосберегайки. Напомню, модуль состоит из пяти параллелей. В каждой параллели 18 светодиодов 2835smd. Падение напряжения 51В.
Посчитаем ток из формулы (2):
Получаем ток =(220-51)*2,2/3,18=117мА. 51В*117мА=6Вт светодиодной мощности (66,7мВт на каждый светодиод-33% от номинала) — расчётная мощность светильника. Собираем, включаем. РАБОТАЕТ!
Но без защитного стекла или пластикового рассеивателя подобные лампочки использовать нельзя. Все светодиоды под фазой, в рабочем режиме касаться нельзя. А теперь посмотрим, что показывают приборы. Куда ж я без них?
Прибор показал 5,95Вт.
Конечно, такую лампочку можно использовать разве что в сарае.
А у людей есть и сараи и гаражи. И туда тоже надо что-то вкручивать (деревенский вариант, объясню почему). Летом часто езжу в деревню. А в деревне напряжение больше 200В не поднимается, бывает и ниже. А теперь посчитаем мощность нашей лампочки при 180В в сети. Всё по той же формуле сначала найдём ток, который течёт через светодиоды. Только вместо 220В в формуле поставим 180В. Итого 110мА*51В=5,6Вт. Как видим, мощность почти не изменилась. А вот лампочки накаливания при таком напряжении ели коптят.
Вариант с гаражом. В гараже наоборот, лампочки не успеваю менять – минимум 240В. Посчитаем ток и мощность при 260В, всё по той же формуле. Имеем: 145мА*51В=7,4Вт (41% от максимальной мощности). До перегорания слишком далеко. Вывод: и при 180В будет светить и при260В не перегорит.
А теперь попробую оценить качественные характеристики света. Попробовал осветить стену
Светит очень ярко, тёплым приятным светом, ярче чем лампа накаливания на 60Вт (снимок ниже). Можете сравнить яркость и цветовой тон. Всё снималось в одинаковых условиях, на одном и том же расстоянии от стены.
Мощность лампы накаливания я тоже измерил для чистоты эксперимента, тем же прибором при тех же условиях.
Лампа накаливания – 56,5Вт.
Светодиодная лампа – 5, 95Вт.
Обе лампочки вставлял по очереди в настольный светильник с отражателем. Вы его видели.
При помощи этих светодиодов решил переделать светильник.
Лампочки уже испортились, а новые идут невысокого качества.
Светильник решил подключить через кондёры, большАя мощность мне не нужна, а электронный драйвер приберегу для чего-нибудь более стоящего. А вот и схема.
Все диоды соединяю последовательно.
Плату для драйвера тоже изготовил из того, что было (по-быстрому)
Даже штырь для крепления был. Дроссель убирать не стал. Оставил для веса, иначе лампа будет падать.
Сделал по всем правилам электробезопасности. Ни одного элемента под напряжением наружу не выходит. Плата закреплена печатными проводниками внутрь.
Посчитаем мощность получившейся лампочки. Сначала по формуле (2) найдём ток через светодиоды при ёмкости балласта 3,2мкФ. (220-18)*3,2/3,18=203,2мА. 203,2мА*18В=3,66Вт – расчётная мощность (при напряжении в сети 220В).
Смотрим на прибор
Прибор показывает 3,78Вт. Но ведь и в розетке 232В, а не 220В. Погрешность минимальна.
И, как обычно, посмотрим как светит.
Это светит лампочка на 40Вт. Естественно, все лампочки в равных условиях (выдержка на ручнике, расстояние до стены одинаковое).
Это мой светодиодный светильник. Фотоэкспонометр подсказывает, что светит ярче сороковки.
В ней тоже стоит токовый драйвер на конденсаторах.
Сделана была задолго до того, как я получил кондёры и диоды из Китая. Поэтому все детали отечественные.
Схема стандартная, как в китайских лампочках.
Именно для этой зарядки я и вывел формулу для расчёта ёмкости балласта. Так что, если кто хочет, может сам рассчитать и ток и время заряда с другими конденсаторами в балласте.
А теперь попытаемся подытожить. Постараюсь выделить все плюсы и минусы подобных схем.
-Во время работы КАТЕГОРИЧЕСКИ нельзя касаться элементов схемы, они под фазой.
-Невозможно достичь высоких токов свечения светодиодов, т.к при этом необходимы конденсаторы больших размеров.
-Большие пульсации светового потока частотой 100Гц, требуют больших фильтрующих ёмкостей на выходе.
+Схема очень проста, не требует особых навыков при изготовлении.
+Не требует особых материальных затрат при изготовлении. Большинство деталей можно найти в любом сарае или гараже (старые телевизоры и т.д.).
+Незаменимы как начальный светодиодный опыт, как первый шаг в освоении светодиодного освещения.
Я написал своё видение, свое отношение к подобным схемам, Оно может отличаться от вашего. Но я его высказал. А вывод как всегда делать вам.
На этом всё. Больше к подробному разбору подобных схем возвращаться не буду. Измусолил их от и до.
А в конце для тех, кто отслеживает треки.
Моргает светодиодная лампа в выключенном состоянии
В виду того что последнее время мы наблюдаем постепенное повышение тарифов на ЖКХ, народ стремиться к экономии и переходит на энергосберегающие источники освещения.
По сравнению с обычными лампами накаливания энергосберегающие и светодиодные лампы обладают огромным количеством преимуществ. И один из больших плюсов это малое потребление электроэнергии. Но встречается также один недостаток. Человек купил в магазине светодиодную лампочку пришел домой вкрутил ее вместо лампочки Ильича и наблюдает необычный эффект который до этого не видел. Выключатель отключен, а лампочка начинает мигать.
Многие грешным делом думают, что лампа неисправна или бракована, относят их обратно в магазин с требованием заменить или вернуть деньги. Однако не стоит паниковать, так как проблема кроется не в лампе. И сегодня мы рассмотрим, почему так происходит и как можно эту проблему решить.
Мигание светодиодных ламп как избавиться от проблемы
Приветствую всех посетителей на сайте «Электрик в доме» . Сегодня хочу рассмотреть вопрос почему моргает светодиодная лампа в выключенном состоянии и как избавиться от проблемы, который как оказалось тревожит многих пользователей. Вопрос, казалось бы, простой, но почему то у многих возникают трудности с решением. Эта статья будет дополнением ранее опубликованной на эту же тему. Если помните, то в прошлой статье мы рассматривали причину мигания энергосберегающих ламп. Для решения проблемы использовали резистор. Подключался он параллельно лампе, что в свою очередь решало проблему с миганием энергосберегайки.
На моем видео канале Ютуб есть даже видео как устранить проблему. Но комментариев приходит очень много. Видно, что людям не понятно как избавиться от проблемы. Одним понравился способ решения с помощью резистора, другим нет. Многие ищут решение в демонтаже подсветки на выключателе. Некоторые советуют поставить параллельно светодиодной лампе обычную лампу накаливания. Это конечно решит проблему мигания, но не всем такой вариант подойдет.
На сегодняшний день энергосберегающие лампы вытесняются светодиодными аналогами. Но проблема остается, при отключении выключателя возникает эффект мигание светодиодных ламп как избавиться от этой проблемы рассмотрим в данной статье.
Сразу хочу сказать что эффект мигание лампы в выключенном состоянии наблюдается не зависимо от того энергосберегающая лампа или светодиодная. Поэтому данный способ решения можно применять к любым видам ламп.
Более качественные светодиодные лампы не мигают, но такие экземпляры стоят соответственно дороже. Не каждый может позволить себе купить лампочку за 10 долларов. А если учесть что таких лампочек требуется 5-6 штук на квартиру, то цена вообще получается непосильной для семейного бюджета.
Светодиодная лампа моргает после выключения – решение проблемы
Как вы помните, причина мигания энергосберегающих и светодиодных ламп при подключении их через выключатель с подсветкой кроется в электронной схеме лампы. А точнее в сглаживающем конденсаторе. Когда лампа подключается через выключатель с подсветкой, через диодный индикатор подсветки в отключенном состоянии выключателя протекает ток. Этот ток небольшой, сотые части ампера, но его хватает для подзарядки сглаживающего конденсатора в схеме лампы.
Как только этот конденсатор набирает достаточное количество заряда, он пытается запустить схему питания, но заряда хватает лишь на короткий импульс, лампа вспыхивает и гаснет. По мере заряда конденсатора процесс повторяется, в результате чего мы и наблюдаем мигающую лампу.
Здесь я приведу наиболее распространенные варианты, которые приводят к миганию ламп и способы их решения.
1) Одноклавишный выключатель с подсветкой
Самая простая схема подключения — один выключатель с подсветкой одна светодиодная лампочка. Лампочек может быть и больше (например трех- или пяти- рожковая люстра) главное, чтобы они все подключались через одноклавишный выключатель.
Итак, мигание светодиодных ламп как избавиться от проблемы при такой схеме? Как я уже упомянул выше, в прошлой статье способом решения проблемы мигания энергосберегающих ламп был резистор мощностью 2 Вт сопротивлением 50 кОм. Сегодня рассмотрим другой способ, как можно решить данную проблему с помощью конденсатора.
Я применяю конденсаторы на напряжение 630 В и емкостью 0.1 мкФ. Многие советуют применять конденсаторы на 220 Вольт. Я считаю это не совсем правильно, так как такой конденсатор может не выдержать напряжения сети и в один прекрасный момент выйдет из строя. Не обязательно, что это случится сразу после подключения, возможно пройдет некоторый промежуток времени (все зависит от качества).
Почему я так думаю? Все знают, что напряжение в сети равно 220 Вольт. А какое это напряжение? Правильно действующее! А чему равно действующее напряжение. Максимальное значение напряжения (амплитудное) разделенное на корень из двух. А амплитудное значение напряжения в свою очередь равно: корень из двух умножить на 220 В. То есть при нормальной работе в сети 220 Вольт амплитудное значение напряжения равно 311 Вольт. И конденсатор который рассчитан на напряжение 220 В может попросту лопнуть при таком значении амплитудного напряжения.
Итак, если у Вас мигает светодиодная лампа одним из способов решением проблемы, может стать керамический конденсатор 630 Вольт, 0.1 мкФ.
Подключаем конденсатор параллельно лампе. Для удобства можно напаять провода к ножкам. Полярности конденсатор не имеет, поэтому без разницы как его подключать (фаза — ноль), главное чтобы он был подключен параллельно с лампой.
Сделать это можно непосредственно на плафоне если это точечный светильник, если это люстра то под декоративной тарелкой люстры, в распределительной коробке и т.п. То есть основная задача скрыть его от глаз, а как вы это будете делать это уже без разницы.
Для наглядности я решил показать как можно подключить конденсатор в распределительной коробке и непосредственно в плафоне (люстре). Первый вариант размещение конденсатора в распредкоробке.
Когда выключатель включен, лампа работает без замечаний, конденсатор не греется — все нормально.
Второй вариант, подключение конденсатора непосредственно в плафоне:
Проверяем работоспособность всей схемы, все работает:
2) Двухклавишный выключатель с подсветкой
Следующим вариантом рассмотрим схему подключения, когда освещение разделено на несколько групп. Например, когда светодиодные точечные светильники разделены на две группы и управляются через двухклавишный выключатель. Или просто двойным выключателем управляется освещение в двух разных комнатах.
Большинство пользователей решают проблему подключением конденсатора к одной лампе (группе) забывая о том, что подсветки две. Потом удивляются, почему моргает светодиодная лампа в выключенном состоянии, я же конденсатор установил?
Если при такой схеме подключения в каждую группу вкрутить по светодиодной лампочке, то они начнут мигать, не зависимо друг от друга. Это происходит, потому что на каждую лампочку (каждую группу) воздействует свой индикатор подсветки в выключателе.
Выключатель двухклавишный, поэтому как вы понимаете световых индикаций тоже две. Соответственно нужно устанавливать не один конденсатор, а два, каждый на свою группу.
Кстати, Вы наверное заметили что у выключателя фирмы Lezard клавиши расположены наоборот. Включение происходит не вверх, а вниз. |
3) Неправильная схема подключения
Еще одной причиной, почему моргает светодиодная лампа в выключенном состоянии, может стать неправильная схема подключения. Причем такая проблема может возникнуть, даже если выключатель будет без подсветки. Что я имею в виду под выражением неправильная схема.
Все мы знаем, что при расключении проводов в распределительной коробке схема собирается таким образом, чтобы на выключатель шла фаза. Ноль напрямую подключается к лампочке (люстре). Это делается в целях безопасности. Если подключение выполнено наоборот, таким образом, что именно фазный провод подключается к светильнику напрямую, может возникнуть эффект мигания при отключенном выключателе.
За счет того что цоколь лампы всегда находится под потенциалом, конденсатор постоянно заряжается и при отключенном выключателе мы наблюдаем тот же эффект что и с выключателем с подсветкой.
Бывает так, что человек намеренно ставит выключатели без подсветки , чтобы избавиться от мигания светодиодных ламп, а после установки получает противоположный эффект. Многих это вводит в ступор, почему так происходит. Это часто можно наблюдать особенно в домах со старой электропроводкой. Раньше при сборке распределительных коробок на этот счет не очень переживали.
Есть спецы, у которых установлен выключатель с подсветкой, и чтобы уйти от проблемы мигания светодиодных ламп они специально меняют местами фазу и ноль. Но это как вы поняли, не поможет, и лампа будет мигать в обоих случаях. |
4) Наведенное напряжение в электропроводке
И еще один вариант, который может привести к миганию светодиодных ламп – наведенное напряжение в электропроводке.
Когда в штробе проложено несколько магистралей электропроводки, да и еще с хорошей нагрузкой на отключенных участках проводки может возникнуть наведенное напряжение. Его значения может вполне хватить для того чтобы лампа начала мигать. Причем такое может возникнуть, даже если выключатель будет без подсветки и схема подключения будет правильной.
Или как бывает, некоторые умельцы чтобы сэкономить на кабеле прокладывают один четырех или пяти- жильный кабель и подключают две жилы (фазу и ноль) к одному потребителю, а остальные жилы к другому. Получается, что одним кабелем питается два потребителя. В этом случае если один из потребителей будет работать, а другой будет отключен, на его контактах может возникнуть наведенное напряжение.
А на сегодня все, думаю я рассмотрел все варианты, при которых может возникнуть мигание светодиодных ламп как избавиться от данной проблемы, тоже надеюсь понятно. Уверен, что данная статья поможет Вам или уже помогла решить этот вопрос.