Межвитковое замыкание якоря, статора, трансформатора. Как определить замыкание между витками.
Электродвигатели часто выходят из строя, и основной причиной для этого является межвитковое замыкание. Оно составляет около 40% всех поломок моторов. От чего возникает замыкание между витками? Для этого есть несколько причин.
Основная причина – излишняя нагрузка на электродвигатель, которая выше установленной нормы. Статорные обмотки нагреваются, разрушают изоляцию, происходит замыкание между витками обмоток. Неправильно эксплуатируя электрическую машину, работник создает чрезмерную нагрузку на электродвигатель.
Нормальную нагрузку можно узнать из паспорта на оборудование, либо на табличке мотора. Лишняя нагрузка может возникнуть из-за поломки механической части электромотора. Подшипники качения могут послужить этой причиной. Они могут заклинить от износа или отсутствия смазки, в результате этого возникнет замыкание витков катушки якоря.
Замыкание витков возникает и в процессе ремонта или изготовления двигателя, в результате брака, если двигатель изготавливали или ремонтировали в неприспособленной мастерской. Хранить и эксплуатировать электромотор необходимо по определенным правилам, иначе внутрь мотора может проникнуть влага, обмотки отсыреют, как следствие возникнет витковое замыкание.
С витковым замыканием электродвигатель работает неполноценно и недолго. Если вовремя не выявить межвитковое замыкание, то скоро придется покупать новый электродвигатель или полностью новую электрическую машину, например, электродрель.
При замыкании витков обмотки двигателя повышается ток возбуждения, обмотка перегревается, разрушает изоляцию, происходит замыкание других витков обмотки. Вследствие повышения тока может послужить причиной выхода из строя регулятора напряжения. Витковое замыкание выясняется сравнением обмоточного сопротивления с нормой по техусловиям. Если оно снизилось, обмотка подлежит перемотке, замене.
Как найти межвитковое замыкание
Замыкание витков легко определить, для этого есть несколько методов. Во время работы электродвигателя обратите внимание на неравномерный нагрев статора. Если одна его часть нагрелась больше, чем корпус двигателя, то необходимо остановить работу и провести точную диагностику мотора.
Существуют приборы для диагностики замыкания витков, можно проверить токовыми клещами. Нужно измерить нагрузку каждой фазы по очереди. При разнице нагрузок на фазах надо задуматься о наличии межвиткового замыкания. Можно перепутать витковое замыкание с перекосом фаз сети питания. Чтобы избежать неправильной диагностики, надо измерить приходящее напряжение питания.
Обмотки проверяют мультиметром путем прозвонки. Каждую обмотку проверяем прибором отдельно, сравниваем результаты. Если замкнуты оказались всего 2-3 витка, то разница будет незаметна, замыкание не выявится. С помощью мегомметра можно прозвонить электромотор, выявив наличие замыкания на корпус. Один контакт прибора соединяем с корпусом мотора, второй к выводам каждой обмотки.
Если нет уверенности в исправности двигателя, то необходимо произвести разборку мотора. При разборе нужно осмотреть обмотки ротора, статора, наверняка будет видно место замыкания.
Наиболее точным методом проверки замыкания между витками обмоток является проверка понижающим трансформатором на трех фазах с шариком подшипника. Подключаем на статор электромотора в разобранном виде три фазы от трансформатора с пониженным напряжением. Кидаем шарик подшипника внутрь статора. Шарик бегает по кругу – это нормально, а если он примагнитился к одному месту, то в этом месте замыкание.
Можно вместо шарика применить пластинку от сердечника трансформатора. Ее также проводим внутри статора. В месте замыкания витков, она будет дребезжать, а где замыкания нет, она просто притянется к железу. При таких проверках нельзя забывать про заземление корпуса двигателя, трансформатор должен быть низковольтным. Опыты с пластинкой и шариком при 380 вольт запрещаются, это опасно для жизни.
Самодельный прибор для определения виткового замыкания
Сделаем дроссель своими руками для проверки межвиткового замыкания в обмотке двигателя. Нам понадобится П-образное трансформаторное железо. Его можно взять, например, от старого вибрационного насоса «Ручеек», «Малыш». Разбираем его нижнюю часть, хорошо нагреваем ее. Там имеются катушки, залитые эпоксидной смолой.
Эпоксидку разогреваем и выбиваем катушки с сердечником. С помощью наждака или болгарки срезаем губки сердечника.
Намотаны эти катушки как раз на П-образном трансформаторном железе.
Не нужно соблюдать углы. Нужно сделать место, в которое легко ляжет маленький и большой якорь.
При обработке необходимо учесть, что железо слоеное. Нельзя обрабатывать его так, чтобы камень его задирал. Нужно обрабатывать в таком направлении, чтобы слои лежали друг к другу, чтобы не было задиров. После обработки снимите все фаски и заусенцы, так как придется работать с эмалированным проводом, нежелательно его поцарапать.
Теперь нам надо сделать две катушки для этого сердечника, которые разместим с обеих сторон. Замеряем толщину и ширину сердечника в самых широких местах, по заклепкам. Берем плотный картон, размечаем его по размерам сердечника. Учитываем размер паза в сердечнике между катушками. Проводим неострым краем ножниц по местам сгиба, чтобы удобнее было сгибать картон. Вырезаем заготовку для каркаса катушек. Сгибаем по линиям сгиба. Получается каркас катушки.
Теперь делаем четыре крышки для каждой стороны катушек. Получаем два картонных каркаса для катушек.
Рассчитываем количество витков катушек по формуле для трансформаторов.
13200 делим на сечение сердечника в см 2 . Сечение нашего сердечника:
3,6 см х 2,1 см = 7,56 см 2 .
13200 : 7,56 = 1746 витков на две катушки. Это число не обязательное, отклонение 10% в обе стороны никакой роли не сыграет. Округляем в большую сторону, 1800 : 2 = 900 витков нужно намотать на каждую катушку. У нас есть провод 0,16 мм, он вполне подойдет для наших катушек. Наматывать можно как угодно. По 900 витков можно намотать и вручную. Если ошибетесь на 20-30 витков, то ничего страшного не будет. Лучше намотать больше. Перед намоткой шилом делаем отверстия по краям каркаса для вывода провода катушек.
На конец провода надеваем термоусадочный кембрик. Конец провода вставляем в отверстие, загибаем, и начинаем намотку катушки.
Заполнение получилось малым, поэтому можно мотать и проводом толще. На второй конец припаиваем проводок с кембриком и вставляем в отверстие. Не заматываем катушку, пока не провели испытание.
Обе катушки намотаны. Надеваем их на сердечник таким образом, чтобы провода шли вниз и были с одной стороны. Катушки абсолютно одинаково намотаны, направление витков в одну сторону, концы выведены одинаково. Теперь необходимо один конец с одной катушки и один с другой соединить, а на оставшиеся два конца подать напряжение 220 вольт. Главное не запутаться и соединить правильные провода. Чтобы понять порядок соединения, нужно мысленно разогнуть наш П-образный сердечник в одну линию, чтобы витки в катушках располагались в одном направлении, переходили от одной катушки во вторую. Соединяем два начала катушек. На два конца подаем напряжение.
Сравним дроссель фабричный и самодельный.
Проверяем заводской дроссель металлической пластинкой на вибрацию места витковых замыканий якоря двигателя и отмечаем их маркером. Теперь то же самое делаем на нашем самодельном дросселе. Результаты получились идентичные. Наш новый дроссель работает нормально.
Снимаем наши катушки с сердечника, обмотки фиксируем изолентой. Пайку также изолируем лентой. Одеваем готовые катушки на сердечник, припаиваем к концам проводов питание 220 В. Дроссель готов к эксплуатации.
Межвитковое замыкание якоря
Для проверки якоря воспользуемся специальным прибором, который представляет трансформатор с вырезанным сердечником. Когда мы кладем якорь в этот зазор, его обмотка начинает работать как вторичная обмотка трансформатора. При этом, если на якоре имеется межвитковое замыкание, от местного перенасыщения железом металлическая пластинка, которая будет находиться сверху якоря, будет вибрировать, либо примагничиваться к корпусу якоря.
Включаем прибор. Для наглядности мы специально замкнули две ламели на коллекторе, чтобы показать каким образом производится диагностика. Помещаем пластинку на якорь и сразу видим результат. Наша пластинка примагнитилась и начала вибрировать. Поворачиваем якорь, витки смещаются, и пластинка перестает вибрировать.
Теперь удалим замыкание ламелей для проверки. Повторяем проверку и видим, что обмотка якоря исправна, пластинка не вибрирует ни в каких местах.
Способ №2 проверки якоря на витковое замыкание
Этот способ подходит для тех, кто не занимается профессиональным ремонтом электроинструмента. Для точной диагностики межвиткового замыкания требуется скоба с катушкой.
Мультиметром можно выяснить лишь обрыв катушки якоря. Лучше для этой цели применять аналоговый тестер. Между каждыми двумя ламелями замеряем сопротивление.
Сопротивление должно быть везде одинаковое. Бывают случаи, когда обмотки не сгорели, коллектор нормальный. Тогда замыкание витков определяют только с помощью прибора со скобой от трансформатора. Теперь устанавливаем мультиметр на 200 кОм, один щуп замыкаем на массу, а другим касаемся каждой ламели коллектора, при условии, что нет обрыва катушек.
Если якорь не прозванивается на массу, то он исправный, либо может быть межвитковое замыкание.
Межвитковое замыкание трансформатора
У трансформаторов есть распространенная неисправность – замыкание витков между собой. Мультиметром не всегда можно выявить этот дефект. Необходимо внимательно осмотреть трансформатор. Провод обмоток имеет лаковую изоляцию, при ее пробое между витками обмотки есть сопротивление, которое не равно нулю. Оно и приводит к разогреву обмотки.
При осмотре трансформатора на нем не должно быть гари, обуглившейся бумаги, вздутия заливки, почернений. Если известен тип и марка трансформатора, можно узнать, какое должно быть сопротивление обмоток. Мультиметр переключают в режим сопротивления. Сравнивают измеренное сопротивление со справочными данными. Если отличие составляет больше 50%, то обмотки неисправны. Если данные сопротивления не удалось найти в справочнике, то наверняка известно количество витков, тип и сечение провода, можно вычислить сопротивление по формулам.
Чтобы проверить трансформатор блока питания с выходом низкого напряжения, подключаем к первичной обмотке напряжение 220 В. Если появился дым, запах, то сразу отключаем, обмотка неисправна. Если таких признаков нет, то измеряем напряжение тестером на вторичной обмотке. При заниженном на 20% напряжении есть риск выхода из строя вторичной обмотки.
Если есть второй исправный трансформатор, то путем сравнения сопротивлений выясняют исправность обмоток. Чтобы проверить более подробно, применяют осциллограф и генератор.
Межвитковое замыкание статора
Часто на неисправном двигателе имеется межвитковое замыкание. Сначала проверяют обмотку статора на сопротивление. Это ненадежный метод, так как мультиметр не всегда может точно показать результат замера. Это зависит и от технологии перемотки двигателя, от старости железа.
Клещами тоже можно измерить сопротивление и ток. Иногда проверяют по звуку работающего мотора, при условии, что подшипники исправны, смазаны, редуктор привода исправен. Еще проверяют межвитковое замыкание осциллографом, но они имеют большую стоимость, не у каждого имеется этот прибор.
Внешне осматривают двигатель. Не должно быть следов масла, подтеков, запаха. Измеренный по фазам ток, должен быть одинаковый. Хорошим тестером проверяют обмотки на сопротивление. При разнице в замерах более 10% есть вероятность замыкания витков обмоток.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта , буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Как убрать межвитковое замыкание обмотки
Причины возникновения
Факторов, влияющих на появление межвиткового замыкания электродвигателя может быть несколько. Рассмотрим основные причины, почему оно возникает:
- Самая распространенная неисправность, при которой происходит пробой обмоток, это перегрузка двигателя. Она может возникнуть при выходе из строя механических деталей. Например, заклинил подшипник ротора, возникла неисправность в транспортере, редукторе или другом механизме. В результате по обмоткам протекает повышенный ток, что приводит к перегреву проводов и разрушению изоляции. Происходит короткое замыкание (КЗ) между витками.
- При изготовлении на заводе допустили брак. Это случается не часто, но не исключено. В процессе эксплуатации изоляция трескается. Обмотка повреждается, происходит межвитковое замыкание.
- Во время ремонта был нарушен технологический процесс. Обмотка получилась очень тугой. В процессе работы электродвигатель нагревается, витки расширяются. Из-за туго намотанной электрообмотки, расширение невозможно. Лак на проводах повреждается, происходит межвитковое замыкание.
- В результате неправильного хранения в двигатель попадает вода, что может привести к пробою изоляции.
С такой неисправностью электродвигатель долго работать не сможет. Произойдет дальнейший нагрев обмотки. Последствия такой неисправности приводят к выходу двигателя из строя. Поэтому важно вовремя определить неисправность, и принять меры по ее устранению.
Диагностика неисправности
Основным признаком возникновения межвиткового замыкания является неравномерный нагрев корпуса. Это происходит по причине повышенного потребления тока одной (неисправной) обмотки. Если возник перегрев одной части корпуса, то двигатель необходимо обесточить и выполнить диагностику.
Ее выполняют следующим образом:
- Проверяют напряжение на всех обмотках. Оно должно быть одинаково, т.е. в сети должен отсутствовать перекос фаз. После этого замеряют токи в каждой обмотке. Замеры производят токовыми клещами. Если ток в одной обмотке отличается от остальных в большую сторону, то это говорит о наличии неисправности в данной обмотке.
- С помощью высокоточного омметра замеряют сопротивление обмоток. Значения должны быть одинаковыми. Обычным прибором проверить наличие замыкания невозможно. Т.к. при коротком замыкании всего двух витков, сопротивление изменится незначительно.
- Замыкание на корпус определяют с помощью мегомметра. Для этого один конец соединяют с корпусом, а второй подсоединяют к обмоткам поочередно. Таким образом, проверяют целостность сопротивления изоляции. В идеале оно должно быть одинаково на каждой обмотке или иметь незначительные отклонения. При этом следует учитывать, что оно меняется в зависимости от температуры проводников.
На нижеприведенном рисунке представлена таблица зависимости изменения сопротивления изоляции от температуры:
Как определить неисправную обмотку
Для определения межвиткового замыкания в электродвигателе, его необходимо разобрать. Произвести визуальный осмотр. Дефект можно определить по внешнему виду обмоток. На них видны места кроткого замыкания, как показана неисправность ротора и статора на рисунках снизу:
Однако зачастую признаки межвиткового замыкания обнаружить визуально невозможно. Поэтому обслуживающий персонал должен знать, что делать в таких ситуациях. При отсутствии видимых неисправностей применяют следующие методы.
Поиск неисправности с помощью металлического шарика
Выявить замыкание изоляции можно при помощи понижающего трехфазного трансформатора. Напряжение вторичной обмотки не должно превышать 40 Вольт.
На разобранный двигатель подается напряжение с трансформатора. Внутрь двигателя по кругу запускают металлический шарик. При исправных обмотках он начинает «бегать» по кругу без остановки.
Если имеется замыкание обмотки, то шарик, сделав два три круга примагничивается в месте неисправности.
Если отсутствует шарик, проверить можно с помощью пластины из трансформаторного железа. Можно использовать железо от неисправного трансформатора. Пластину прикладывают по кругу поочередно. В неисправном месте пластина начнет вибрировать. В остальных местах она примагничивается.
Проверяя исправность электродвигателя, не стоит забывать о технике безопасности. Корпус двигателя должен быть заземлен. При этом, категорически запрещено подавать напряжение выше 40 Вольт на обмотки.
На рисунке снизу показана методика проверки с помощью шарика:
Проверка специальным прибором
Поиск межвиткового замыкания электродвигателя можно производить с помощью прибора для проверки пробоя изоляции обмоток. Его можно приобрести через интернет или сделать самостоятельно. Многочисленные схемы приведены в интернете. Они не сложные. Повторить может любой специалист, имеющий навыки работы с паяльником и разбирающийся в электросхемах.
Как определить неисправность, подробно расписано в инструкции к прибору. Диагностика выполняется за считанные минуты. Однако, для выполнения диагностики необходим осциллограф.
Это дорогостоящий прибор. Работать на нем умеют не все мастера. Поэтому этот метод проверки не получил массового распространения.
Сейчас промышленность выпускает устройства, которые не требуют применения осциллографа. В нем имеются два светодиода, по которым определяют неисправность.
Прибор представляет собой генератор, колебательный контур которого состоит из конденсатора и обмотки двигателя. Подстроечным резистором добиваются возбуждения контура. В этом случае светодиод начинает мигать. Поочередно подсоединяют все обмотки. При подключении неисправной обмотки, светодиод будет гореть постоянно. Т.е. произойдет срыв генерации.
Диагностика якоря с помощью дросселя
Для проверки якоря применяют дроссель. Он представляет собой трансформатор с вырезанным сердечником. Используется прибор заводского изготовления или самодельный.
Сделать его можно при наличии неисправных вибрационных насосов «Малыш» или «Ручеек». Подробная инструкция с описанием имеется в интернете.
Проводились измерения на заводском приборе и самодельном, изготовленном по методике, описанной в интернете. Результат оказался одинаковым.
Как проверять неисправность данным устройством. В вырез помещается якорь. На дроссель подается напряжение. При этом обмотка якоря будет представлять вторичную обмотку трансформатора.
С помощью пластины из трансформаторного железа проверяем исправность обмотки. Постепенно поворачивая якорь, в месте пробоя, пластина примагничивается к якорю и начинает вибрировать. Это показано на нижеприведенном рисунке:
Измерение сопротивления тестером
При отсутствии дросселя можно произвести проверку аналоговым тестером. Стоит отметить, что таким образом можно проверить обрыв обмотки, а замыкание витков проверяют вышеописанным способом.
Для этого производят замеры между ламелями якоря. Сопротивление проводников должно быть одинаковым.
Обязательно производят проверку замыкания проводов на корпус. Для этого необходимо один конец тестера соединить с корпусом и поочередно прозвонить каждую обмотку. Такую проверку выполняют при условии отсутствия обрыва в обмотках.
На фото снизу показано, как измерять сопротивление проводников:
Проверка статора тестером
Проверить целостность обмотки статора можно с помощью тестера. Для этого достаточно измерить сопротивление каждой в отдельности. Замеры выполняют с помощью высокоточного прибора. Не лишне проверить на отсутствие пробоя изоляции на корпус с помощью мегомметра.
На рисунке вверху показана прозвонка целостности обмоток:
Заключение
Во время эксплуатации определить межвитковое замыкание обмоток электродвигателя достаточно сложно. Да и возникает оно нечасто. Обычно двигатели с таким дефектом работают до последнего момента. Пока из него не пойдет дым.
Поэтому у обслуживающего персонала не возникает вопрос, как устранить неисправность. Двигатель отдают на перемотку. Аналогично поступают при своевременном обнаружении КЗ обмоток, перематывают неисправную часть. При этом нужно учитывать, что замыкание витков между собой устранить без перемотки невозможно.
Опубликовано 25.08.2020 Обновлено 25.08.2020 Пользователем Александр (администратор)
Неисправности обмоток и их устранение
Такого рода замыкание происходит из-за механических повреждений изоляции. Причинами механических повреждений являются: наличие в пазах выступающих листов активной стали и заусенцев, тугое заполнение паза, неплотная укладка обмотки в пазы, отчего провода под действием центробежных сил при вращении перемещаются в пазу, ослабление бандажей и другое.
Кроме механических повреждений изоляции, причинами замыкания на корпус могут явиться увлажнение изоляции, попадание в пазы и лобовые части припоя, сильный и длительный перегрев машины, распайка соединений и другое.
Замыкание обмотки якоря на корпус можно обнаружить контрольной лампой (рисунок 1, а). При проверке лампу присоединяют одним концом к сети, а другим к коллектору. Второй (свободный) конец сети присоединяют к валу якоря. Загорание лампочки свидетельствует о замыкании обмотки на корпус. Для такой проверки можно пользоваться также мегомметром.
Рисунок 1. Проверка замыкания обмоток на корпус.
а – контрольной лампой; б – мегомметром: 1 – мегомметр; 2 – коллектор; 3 – вал; 4 – подставка
Место замыкания обмотки на корпус можно определить по схеме, приведенной на рисунке 2.
![]() |
|
Рисунок 2. Определение места замыкания обмотки на корпус. а – по падению напряжения; б – показания прибора при отыскании замыканий (для петлевой обмотки); в — прослушиванием |
![]() |
В схеме, приведенной на рисунке 2, а, питание от источника постоянного тока подключают к щеткам через предохранитель П. Ток регулируют реостатом R. Щуп одного из проводов от милливольтметра mV присоединяют к сердечнику или валу якоря, а другим касаются любой пластины коллектора. Источником тока может служить аккумуляторная батарея или сеть постоянного тока напряжением 220 или 110 В. При отыскании повреждения достаточен ток 6 – 8 А. Милливольтметр берут со шкалой до 50 мВ.
При петлевой обмотке присоединение к коллектору производят в двух диаметрально противоположных точках. При волновой обмотке соединение к пластинам производят на расстоянии половины шага по коллектору.
При замыкании на корпус в петлевой обмотке стрелка прибора покажет отклонение, равное сумме падений напряжений в секциях, оказавшихся между секцией, замкнутой на корпус, и той, к которой присоединен щуп (рисунок 2, б, положение I – сплошная стрелка). Щуп, присоединенный к коллектору, передвигают в одну и другую стороны. При его приближении к замкнутой на корпус секции показания прибора будут уменьшаться (положение II – пунктирная стрелка), так как будет уменьшаться число секций, на которых измеряется падение напряжения. Когда щуп будет соединен с секцией, которая замкнута на корпус, стрелка милливольтметра станет на нуль (положение III). Если двигать щуп дальше, то стрелка прибора отклонится в обратную сторону (положение IV).
При проверке волновой обмотки наименьшие показания будут давать пластины коллектора, либо непосредственно замкнутые на корпус, либо замкнутые на корпус через секции обмотки.
Место замыкания определяют также «прослушиванием» обмотки (рисунок 2, в). Для этого аккумуляторную батарею и зуммер 3 присоединяют к валу якоря и любой коллекторной пластине. К валу присоединяют также один вывод телефона 1; другой вывод его перемещают по коллектору 2. Чем ближе перемещаемый проводник к замкнутой пластине или секции, тем слабее шум в телефоне. При касании проводником замкнутой на корпус секции шум исчезает.
Если указанные выше способы не дают положительных результатов, то приходится путем распайки делить обмотку на части и проверять мегомметром каждую часть в отдельности. При обнаружении замыкания в одной из частей обмотки ее продолжают делить на части до тех пор, пока не будет обнаружена секция, замкнутая на корпус.
Замыкания на корпус устраняют следующим образом:
- если замыкание произошло в местах выхода секций из пазов, то вгоняют под секцию небольшие клинья из фибры, бука или другого изоляционного материала;
- если замыкание произошло в пазовой части секции, то секцию переизолируют или заменяют новой;
- при отсыревании обмотки ее прослушивают;
- если обнаружено замыкание пластин на корпус, то следует произвести ремонт коллектора с разборкой.
Межвитковые замыкания
Такой вид замыканий представляет собой соединение витков внутри обмотки вследствие повреждения изоляции обмоточных проводов. Чаще всего межвитковые замыкания происходят при повреждении изоляции проводников во время рихтовки и осадки катушек, при укладке обмотки, из-за попадания припоя или стружки между витками, при пробое обмотки на корпус, вследствие перекрещивания проводов в пазовой части при всыпной обмотке и тому подобное.
Межвитковые замыкания могут быть в одной или нескольких секциях якоря или между секциями вследствие замыкания смежных пластин коллектора. При замыкании между концами секции или между пластинами коллектора, а также при соединении между собой отдельных витков секции в обмотке якоря образуются замкнутые контуры.
В петлевой обмотке замыкание между двумя смежными пластинами вызывает замыкание только секции, которая присоединена к этим пластинам, и число действующих в обмотке витков уменьшается на число витков, заключающихся в одной секции.
В волновой обмотке замыкание между двумя смежными пластинами вызывает замыкание ряда секций, которые заключены в одном полном обходе вокруг якоря. Число их равно числу пар полюсов машины.
В короткозамкнутых контурах при вращении их в магнитном поле индуктируется электродвижущая сила (ЭДС), которая вызывает большие токи короткого замыкания вследствие малого сопротивления этих контуров. Короткозамкнутые витки, появившиеся во время работы машины, сильно разогреваются проходящим через обмотку током и обычно сгорают.
Как определить межвитковое замыкание электродвигателя? У якорей с волновой обмоткой, а также в обмотках, имеющих уравнительные соединения при значительном числе замкнутых секций, невозможно по нагреву определить короткозамкнутую ветвь, так как нагревается весь якорь. Иногда место витковых замыканий может быть обнаружено при внешнем осмотре по обуглившейся и сгоревшей изоляции секции.
Наиболее простые и часто встречающиеся случаи (например, замыкания витков одной секции, между соседними коллекторными пластинами или же между соседними секциями, находящимися в одном слое обмотки) обнаруживаются по падению напряжения, прослушиванием и другими способами.
Способ определения повреждений по падению напряжения
![]() |
Рисунок 3. Проверка отсутствия замыкания между витками якоря по падению напряжения |
Такой способ (рисунок 3) заключается в следующем. К паре коллекторных пластин 1 подводится постоянный ток с помощью щупов 3. Щупами 2 измеряют падение напряжения на этой же паре пластин. При замыкании в секции, которая присоединена к проверяемой паре пластин, получается меньшее падение напряжения при одном и том же токе, чем на другой паре пластин, между которыми нет замыкания. Чем больше короткозамкнутых витков, тем меньше падение напряжения. Наименьшее падение напряжения (или равное нулю) будет при замыкании между самими коллекторными пластинами.
Таким образом проверяется весь якорь и производится сравнение результатов измерений. Проверку якоря следует производить при поднятых щетках. Параметры схемы такие же, как и на рисунке 2, а.
Чтобы предупредить повреждение милливольтметра (рисунок 3), необходимо сначала прикладывать к коллектору щупы 3, а затем щупы 2; отнимать щупы нужно в обратном порядке.
Хорошие результаты этот способ дает при определении замыканий между витками в секции с небольшим количеством витков (стержневые обмотки). В многовитковых секциях при замыкании одного-двух витков разница в показаниях милливольтметра на коллекторных пластинах исправной секции и поврежденной может оказаться незначительной.
На рисунке 4 показаны схемы для определения межвитковых замыканий с помощью телефона и стальной пластины. Испытательная установка состоит из электромагнита 1, питаемого переменным током повышенной частоты. Якорь 3 устанавливают над электромагнитом. При межвитковом замыкании в какой-либо секции в ней будет проходить большой ток, что обнаружится по нагреву. С помощью телефона 2 и электромагнита 4 можно быстро определить паз с поврежденной секцией. При исправных секциях обмотки в телефоне 2 слышен слабый, одинаковой силы звук. Если же одна из секций имеет межвитковое замыкание, то звук в телефоне заметно усиливается.
Рисунок 4. Проверка якоря на межвитковое замыкание.
а – с помощью телефона; б – с помощью стальной пластины
Для полной проверки обмотки нужно переставлять электромагнит 4 по зубцам якоря, пока последний не будет обойден кругом. Если к зубцам сердечника, охватывающим неисправную секцию, поднести тонкую стальную пластину 5 (рисунок 4, б), то она начнет дребезжать. Этим способом обнаруживается замыкание смежных пластин коллектора, которое вызывает те же явления, что и межвитковое замыкание.
Для определения межвитковых замыканий может быть использована схема, показанная на рисунке 2, в. Для этого второй проводник присоединяют не к валу, как показано на рисунке, а к коллекторной пластине. Провода от телефона 1 присоединяют к двум смежным пластинам.
Секцию, имеющую витковое замыкание, обычно заменяют новой. Переизолировкой одного лишь места замыкания можно ограничится только в случае неполного контакта в месте замыкания, да и то при отсутствии иных повреждений изоляции.
В случае необходимости (в качестве временной меры) при небольшом числе коллекторных пластин производят выключение из работы поврежденных секций. Выключение одной секции не отражается заметным образом на коммутации машины.
Обрывы в обмотке якоря
Обрывы в обмотке возникают вследствие выплавления припоя из-за перегрева обмоток при перегрузках, короткого замыкания, надлома от частых изгибаний лобовых частей обмотки и тому подобного. Обрывы чаще всего происходят в обмотках из тонкого провода из-за его малой механической прочности. Обрыв обмотки или плохой контакт сильно ухудшает коммутацию машины и может вызвать значительное искрение на коллекторе и его подгорание. Если якорь работает длительное время с обрывом, то образующаяся в месте обрыва дуга может постепенно прожечь изоляцию и привести к замыканию обмотки на корпус.
В петлевой обмотке обрыв сопровождается искрением на коллекторе и подгоранием двух смежных пластин, к которым присоединена поврежденная секция. При волновой обмотке подгорает несколько пар соседних пластин (по числу полюсов), к которым присоединены секции одной последовательной цепи этой обмотки. При этом подгорают обращенные друг к другу края соседних пластин.
Как при плохом контакте, так и при обрыве при наличии уравнительных соединений могут подгореть, кроме пластин, относящиеся к неисправным секциям, и коллекторные пластины, отстоящие от них на двойное полюсное деление и связанные с ними уравнительными соединениями. Место обрыва можно определить по падению напряжения.
При обрыве какой-либо секции (рисунок 5, а) не будет тока во всей половине обмотки, в которой находится неисправная секция, поэтому прибор везде покажет нуль (положения II и III), кроме случая, когда провода прибора будут присоединены к концам оборванной секции. При этом цепь будет замкнута через прибор и стрелка его отклонится так же, как если бы провода прибора были присоединены непосредственно к источнику тока (положение I).
Рисунок 5. Отыскание одного (а) и двух (б) обрывов в петлевой обмотке
При двух обрывах (рисунок 5, б), если замыкать попарно пластины коллектора, прибор ничего не покажет на всем участке между пластинами, к которым подведено напряжение. Для нахождения мест обрывов поступают следующим образом: один из щупов от проводов, соединенных с прибором, устанавливают на коллекторную пластину, к которой подводится питание, а другой перемещают по коллектору, начиная от другого подводящего питание щупа. При этом показания прибора будут максимальными (положение IV). Когда передвигаемый по коллектору щуп «пройдет» место обрыва, прибор покажет нуль (положение V). Найдя один обрыв, таким же образом отыскивают и другой.
При обрывах в волновой обмотке наибольшее отклонение будет иметь место на нескольких парах пластин, находящихся попарно на расстоянии шага по коллектору друг от друга. Обрывы в якоре, имеющем параллельные ветви, могут быть также определены измерением их сопротивления. При обрыве одной из секций сопротивление обмотки резко возрастает.
![]() |
Рисунок 6. Установка для проверки правильности соединения обмотки якоря с пластинами коллектора |
После укладки обмотки якоря в пазы сердечника она должна быть проверена на правильность соединения с пластинами коллектора. Эту проверку производят после того, как концы секций обмотки зачищены до металлического блеска и заложены в прорези коллекторных пластин. На рисунке 6 показана схема установки, необходимой для этой цели. На деревянных стойках, привернутых к деревянному основанию 3, устанавливается якорь 2. Под якорем помещен электромагнит 5, сердечник которого изготовлен из П-образных листов электротехнической стали. Обмотка электромагнита 8 состоит из двух катушек, которые соединены так, что при прохождении по ним тока возникают два разноименных магнитных полюса С и Ю. Катушки получают питание от выпрямителя 4 через реостат 7. Выключателем служит ножная педаль 1. Вилкой 9 милливольтметр 6 соединяется с двумя смежными пластинами. В момент размыкания контактов педалью 1 в обмотке якоря индуктируются импульсы. При правильном соединении обмотки и положении вилки 9 на любых смежных пластинах коллектора стрелка милливольтметра 6 должна отклоняться в одну и ту же сторону и приблизительно до одного и того же деления шкалы.
Неисправности в обмотках полюсов и устранение их
Катушки полюсов меньше подвергаются повреждениям, так как они неподвижно закреплены на полюсах. Чаще всего катушки повреждаются на углах внутри катушки, у места выхода внутреннего выводного конца вследствие неправильной установки его вначале намотки и тому подобное. К причинам повреждения можно отнести нарушение изоляции из-за того, что она плохо натянута, неравномерную укладку изоляции, выступы и заусенцы металлического каркаса и другое. Наиболее часто встречаются следующие неисправности обмоток полюсов: обрыв или плохой контакт, межвитковые замыкания и замыкание обмоток на корпус.
Межвитковое замыкание в катушках полюсов
Поврежденная катушка со значительным числом замкнутых витков имеет уменьшенное сопротивление. Ее можно легко обнаружить, если измерить сопротивления всех катушек измерительным мостом, тестером, методом амперметра и вольтметра (постоянным током) и другими. При измерении сопротивления методом амперметра и вольтметра испытуемая катушка включается в сеть через сопротивление, которым может регулироваться ток в катушке. По показаниям амперметра и вольтметра находят по закону Ома сопротивление катушки. Сопротивление всех катушек, не имеющих витковых замыканий, одинаково. В катушках с замкнутыми витками будет меньше сопротивление, чем в катушках, не имеющих замкнутых витков.
Замыкания в обмотках полюсов, если они находятся не на выводных концах, устраняют частичной или полной перемоткой. С катушки отматывают витки и одновременно производят осмотр. Если витковые замыкания вызваны увлажнением изоляции, то катушку следует просушить.
Обрывы в обмотках полюсов
Обрывы в обмотках полюсов бывают только в катушках, которые изготовлены из проволоки небольшого сечения. Место обрыва можно определить вольтметром, которым измеряют напряжение на всех катушках (рисунок 7, а). При обрыве в катушке вольтметр, подключенный к зажимам поврежденной катушки, покажет полное напряжение сети. На исправных катушках вольтметр не даст отклонений. Обрыв можно также обнаружить контрольной лампой или мегомметром. Обрыв, а также плохой контакт в доступных местах устраняют пайкой.
Рисунок 7. Определение места обрыва (а) и замыкания на корпус (б) в обмотках полюсов
Замыкание обмотки полюсов на корпус
Замыкание обмотки полюсов на корпус можно определить, если через всю обмотку пропустить постоянный ток. Один конец вольтметра (рисунок 7, б) присоединяют к корпусу машины, а другой (свободный) – к выводу катушки. Вольтметр покажет наименьшее напряжение на выводах катушки, замкнутой на корпус.
Проверка последовательной обмотки или обмотки добавочных полюсов производится при пониженном напряжении, величина которого регулируется включенным последовательно реостатом. Вместо вольтметра для измерения напряжения применяют милливольтметр.
![]() |
Рисунок 8. Проверка полярности полюсов |
Замкнутую на корпус катушку можно обнаружить контрольной лампой или мегомметром. Для этого катушки разъединяют и проверяют отдельно. Для устранения замыкания на корпус снимают катушку с сердечника полюса и осматривают места соприкосновения ее как с корпусом, так и со станиной. Замыкания на корпус устраняют переизолировкой катушек, установкой изоляционных прокладок, сушкой при увлажнении и другими способами.
Правильность соединения катушек полюсов проверяется компасом или намагниченной стрелкой (рисунок 8). Для этого по обмоткам полюсов пропускают постоянный ток и к каждой катушке подносят компас или стрелку. Если чередование полярности полюсов правильное, то при перемещении, например, компаса внутри машины (при вынутом якоре) от полюса к полюсу стрелка компаса будет поочередно притягиваться к полюсам то одним, то другим концом.
Источник: Логачев И. С., Родин Г. Г., «Ремонт обмоток машин постоянного тока» — Москва: Энергия, 1968 — 128 с.
Межвитковое замыкание: причины, способы проверки и методы ремонта
Во время эксплуатации любого оборудования периодически возникают поломки разного характера, которые требуют качественного ремонта. Распространенные сегодня электродвигатели не являются тому исключением. Такие агрегаты могут выходить из строя в результате межвиткового замыкания. В такой ситуации может сгореть исправный, на первый взгляд, двигатель. Именно поэтому специалисты стараются своевременно определить замыкание межвиткового типа, чтобы качественно устранить причину неисправности.
Описание
Сложное межвитковое замыкание может возникнуть по причине нарушения изоляционного слоя ответственных элементов в многофункциональных электротехнических агрегатах. В классическом двигателе, кроме распространенного замыкания на корпус, часто присутствуют и другие проблемы. Чаще всего это может быть спровоцировано выходом из строя обмотки ротора или же статора. Специалистам удалось установить, что классическое межвитковое замыкание возникает в результате перегрева мотора. Когда на устройство воздействует повышенная температура, то сложно избежать разрушения нанесенного производителем лака, который выполняет роль надежной оболочки. Из-за этого витки оголяются и начинают постепенно взаимодействовать друг с другом, вызывая тем самым короткое замыкание. Даже если это точечная проблема, двигатель все равно не будет функционировать как раньше. Ликвидировать поломку можно только при помощи качественной перемотки.
Элементарная проверка
Первым делом необходимо аккуратно установить индуктор на платформе тормозного изделия и включить его в сеть. Переключатель следует перевести в положение 4. Якорь аккуратно укладывают на полюса индуктора, после чего закрепляют на валу приспособление для проворачивания якоря. Можно включить стенд. Мастеру предстоит аккуратно прижать щупы контактного агрегата к двум соседним коллекторам якоря. Немного проворачивая механизм, нужно отыскать положение, при котором показания механизма будут находиться на максимальной отметке. При помощи резистора устанавливают стрелку устройства на максимально удобную отметку шкалы. Необходимо постепенно проворачивать якорь, не меняя при этом пространственного положения щупов. Мастеру остается только считать показания прибора.
Важные нюансы
Экспертами был разработан универсальный прибор для проверки межвиткового замыкания. Но первым делом нужно точно установить факт отсутствия дополнительной нагрузки на мотор. Проблема может возникнуть по причине засорения воздушной системы или заедания механического отдела. Чтобы безошибочно определить межвитковое замыкание, необходимо некоторое время понаблюдать за работающим двигателем. В такой ситуации мастер заметит интенсивное круговое искрение. Может ощущаться неприятный запах горелой изоляции. Чтобы ликвидировать проблему, нужно ее своевременно определить. При стандартном визуальном осмотре, обмотки якоря не должны быть вспученными или почерневшими. Указывать на проблему может запах горелого. Мастер должен убедиться в том, что между пластинами коллектора нет замыкания.
Универсальный агрегат
При помощи многофункционального прибора для проверки межвиткового замыкания можно безошибочно измерить сопротивление между обмоткой и корпусом. В рабочем состоянии разница полученных данных остается незначительной. Если полученный показатель превышает отметку 11 процентов, то качественного ремонта не избежать. Мастеру придется заменить всю обмотку, которая будет иметь меньшее сопротивление. Основные ремонтные работы должны быть направлены на перематывание неисправных деталей. Такие манипуляции доступны только в специальных условиях. Работу можно доверить исключительно специалистам.
Помощь мультиметра
Универсальность этого устройства позволяет выполнить проверку межвиткового замыкания, чтобы своевременно устранить имеющуюся поломку. Любые ремонтные работы должны начинаться с разборки якоря электродвигателя. Причины могут возникнуть по следующим причинам:
- Износ и поломка щеток.
- Замыкание между пластинами.
- Отсутствие контакта на клеммах.
- Плохая изоляция.
- Слишком высокая температура для пластин коллектора.
Многолетний опыт экспертов свидетельствует о том, что сломанный стартер издает характерный звук гула, появляются искры, меняется интенсивность вращения якоря, образуются вибрации во время работы.
Самостоятельный ремонт
Чтобы проверить межвитковое замыкание на якоре, нужно аккуратно приложить к пластине коллектора стартер лампы. Нужно посмотреть, загорится лампочка либо нет. Если лампочка сработала, тогда мастеру нужно подумать о замене обмотки или всего ротора. Но если реакции нет, проверку нужно выполнить омметром. Сопротивление должно быть максимально низким, не более 9 кОм. Если замыкание межвитковое, тогда пригодится определенный прибор для проверки якоря стартера. Устранить эту проблему можно в том случае, если выровнять все провода и очистить их от лишнего мусора. Если все перечисленные рекомендации не подействовали, остается только выполнить перемотку якоря. При распайке коллекторных выводов необходимо демонтировать ротор и тщательно зачистить поверхность при помощи бормашины. Определить сгоревший аккумулятор можно только с помощью аккумулятора.
Вариант для профессионалов
Специалисты привыкли использовать качественный прибор для межвиткового замыкания. Такой агрегат предназначен исключительно для профессионального ремонта электрооборудования. Для работы понадобится катушка со скобой. Классическим мультиметром можно определить только обрыв на якоре. Для более качественной диагностики лучше использовать аналоговый тестер. Между всеми ламелями обязательно замеряют сопротивление. Во всех случаях показатели должны быть идентичными. В некоторых случаях обмотки могут не сгореть, да и коллектор остается невредимым. Определить замыкание межвиткового типа можно с помощью прибора с прочной скобой от трансформатора. Мультиметр устанавливают на отметку 180 кОм. Щуп аккуратно замыкают на массу, а второй поочередно прикладывают к каждой ламели коллектора. Если якорь по-прежнему не прозванивается на массу, то он абсолютно исправен.
Замыкание классического статора
Даже такое изделие подвержено межвитковому замыканию. Первым делом специалист обязательно проверяет обмотку статора на факт сопротивления. Но это не самый надежный метод. Многие факторы влияют на мультиметр, из-за чего он может отображать ошибочные данные. Итоговый результат во многом зависит от перемотки двигателя, а также от старости самого железа. Обычными клещами можно измерить ток и сопротивление. Если у мастера есть необходимый опыт, то он может определить поломку даже по звуку работающего двигателя. Но в этом случае обязательно должны быть рабочие подшипники, которые качественно смазаны. При желании мастер может задействовать осциллограф, но такой агрегат отличается большой стоимостью. Из-за этого приобрести агрегат могут далеко не все. На двигателе не должно быть следов масла, подтеков. Недопустимо наличие посторонних запахов. Качественным тестером проверяют обмотки на факт сопротивления. Если результаты отличаются друг от друга более чем на 11%, то причина поломки может крыться в замыкании.
Самодельное приспособление
Устранить межвитковое замыкание электродвигателя можно при помощи агрегата, сооруженного в домашних условиях. Для сборки нужно подготовить транзисторы КТ209 и КТ315, переменные резисторы на 47 кОм и 1 кОм. Питание изделия можно обеспечить при помощи батареи, а также высококачественного стабилизатора. Дополнительно нужно установить зеленый светодиод, который будет сигнализировать о включении агрегата, а оранжевый – контрольный. Последовательно с этими элементами включают резистор на 30 Ом. Стоит отметить, что рабочая плата имеет компактные размеры, за счет чего легко поместится в небольшой корпус.
Причины неисправностей
Межвитковое замыкание электродвигателя не является редкой проблемой. Такая неисправность встречается в 50% всех случаев поломок. Ситуация может возникнуть из-за повышенной нагрузки на электроустановку. Неправильная эксплуатация агрегата часто влечет за собой преждевременные поломки. Номинальную нагрузку можно определить по паспорту установки. Перегрузка может быть спровоцирована механическим повреждением самого мотора. Сухие либо заклинившие подшипники часто вызывают замыкание. Не исключен факт заводского брака. Если электродвигатель хранится в ненадлежащих условиях, то это всегда чревато тем, что обмотка просто отсыреет.
Изменение сопротивления
Определение межвитковое замыкание позволяет существенно упростить ремонтные работы. Чтобы качественно проверить мотор на факт сопротивления изоляции, опытные электрики активно используют мегометр с напряжением 500 В. Таким приспособлением можно безошибочно измерить сопротивление изоляции обмоток двигателя. Если электродвигатели обладают напряжением 12 В или 24 В, то без помощи тестера просто не обойтись. Изоляция таких обмоток не рассчитана на испытание под максимальным напряжением. Производитель всегда в паспорте к агрегату указывает оптимальное значение. Если тестирование показало, что сопротивление изоляции гораздо меньше оптимальных 20 Мом, то обмотки обязательно разъединяют и тщательно проверяют каждую по отдельности. Для собранного мотора показатель не должен быть ниже положенных 21 Мом. Если изделие долгое время пролежало в сыром месте, то перед эксплуатацией его обязательно просушивают в течение нескольких часов накальной лампой.
Неисправности трансформатора
Опытные специалисты привыкли в работе использовать универсальный индикатор межвиткового замыкания, который существенно упрощает поиск возникших поломок. Но даже профессионалы должны помнить о том, что выбор наиболее подходящего источника питания и его местоположения напрямую зависит от количества питаемых изделий и типа подключения. У трансформатора есть довольно распространенная неисправность – непредвиденное замыкание витков между собой.
Эту проблему не всегда можно определить при помощи классического мультиметра. Агрегат нужно тщательно осмотреть на предмет наличия визуальных дефектов. Провод обмоток обладает лаковой изоляцией. В случае ее пробоя между витками возникает сопротивление, которые выше 0. В такой ситуации может возникнуть перегрев оснащения. При визуальном осмотре на трансформаторе не должно быть следов копоти, обуглившихся частиц, вздутия заводской заливки, почернений. Мастер может узнать номинальное напряжение из прилагаемой к агрегату документации. Если отличие показателей составляет 45% и больше, то обмотка вышла из строя. Чтобы не усугубить ситуацию, ремонт столь ответственного элемента лучше доверить специалистам, которые обладают всеми необходимыми навыками.